Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120916, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642486

RESUMO

Crop residue management has become more challenging with intensive agricultural operations. Zero tillage and crop residue returns, along with the enhancement of in-situ residue decomposition through microbial intervention, are essential measures for preserving and enhancing soil quality. To address this problem in view of stubble burning, field experiments were conducted in rice-rice (variety Swarna) cropping systems under lowland conditions, wherein the following different residue management practices were adopted viz., conventional cultivation (CC), residue incorporation (RI @ 6 t paddy straw ha-1), residue retention (RR @6 t paddy straw ha-1), and zero tillage (ZT). In this experiment, two microbial products i.e. solid microbial consortium (SMC) at 2.0 kg ha-1) and capsule (10 numbers ha-1), were evaluated in both Rabi (dry) and Kharif (wet) seasons under different residue management practices. The results on soil microbial properties showed that application of either SMC or capsule based formulation could significantly improve the soil organic carbon (SOC) content in ZT (9.51 g/kg), followed by RI (9.36 g/kg), and RR (9.34 g/kg) as compared to CC (7.61 g/kg). There were significant differences in the soil functional properties (AcP, AkP, FDA, and DHA) with microbial interventions across all residue management practices. SOC was significantly positive correlated with cellulase (R2 = 0.64, p < 0.001), ß-glucosidase (R2 = 0.61, p < 0.001), and laccase (R2 = 0.66, p < 0.001) activity; however, the regression coefficients varied significantly with microbial intervention. Moreover, the availability of N, P, and K in soil was significantly (p < 0.05) improved under microbial treatments with either RR or RI practices. Among the different methods of residues management practices, RI with microbial intervention registered a consistent yield improvement (8.4-17.8%) compared to conventional practices with microbial intervention. The present findings prove that the application of decomposing microbial consortia for in-situ rice residue management under field conditions significantly enhances soil quality and crop yield compared to conventional practices.


Assuntos
Agricultura , Oryza , Microbiologia do Solo , Solo , Oryza/crescimento & desenvolvimento , Índia , Solo/química , Agricultura/métodos , Produtos Agrícolas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA