Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 248: 115996, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38183789

RESUMO

γ-Glutamyl transpeptidase (GGT) is a key biomarker for cancer diagnosis and post-treatment surveillance. Currently available methods for sensing GGT show high potential, but face certain challenges including an inability to be used to directly sense analytes in turbid biofluid samples such as whole blood without tedious sample pretreatment. To overcome this issue, activity-based electrochemical probes (GTLP and GTLPOH) were herein developed for a convenient and specific direct targeting of GGT activity in turbid biosamples. Both probes were designed to have GGT catalyze the hydrolysis of the gamma-glutamyl amide moiety of the probe, and result in a self-immolative reaction and concomitant ejection of the masked amino ferrocene reporter. The GTLPOH probe, delivered distinctive key results including high sensitivity, high affinity, a wide detection range of 2-100 U/L, and low LOD of 0.38 U/L against GGT. This probe delivered a precise target for sensing GGT and was free of interference from other electroactive biological species. Furthermore, the GTLPOH probe was employed to monitor and quantify the activity of GGT on the surfaces of tumor cells. The designed sensing method was also validated by the direct quantitative measurement of GGT activity in whole blood and urine samples, and the results were found to be consistent with those of the standard fluorometric assay kit. Thus, GTLPOH is of great significance for its promise as a point-of-care tool for early-stage cancer diagnosis as well as a new drug screening method.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , gama-Glutamiltransferase , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , Amidas , Neoplasias/diagnóstico
2.
ACS Sens ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331818

RESUMO

Pantetheinase is a key biomarker for the diagnosis of acute kidney injury and the monitoring of malaria progression. Currently, existing methods for sensing pantetheinase, also known as Vanin-1, show considerable potential but come with certain limitations, including their inability to directly sense analytes in turbid biofluid samples without tedious sample pretreatment. Here, we describe the first activity-based electrochemical probe, termed VaninLP, for convenient and specific direct targeting of pantetheinase activity in turbid liquid biopsy samples. The probe was designed such that cleavage of the pantetheinase amide linkage, triggered by a self-immolative reaction, simultaneously ejects an amino ferrocene reporter. Among the distinctive properties of the VaninLP probe for sensing pantetheinase are its high selectivity, sensitivity, and enzyme affinity, a wide linear concentration range (8-300 ng/mL), and low limit of detection (2.47 ng/mL). The designed probe precisely targeted pantetheinase and was free of interference by other electroactive biological species. We further successfully applied the VaninLP probe to monitor and quantify the activity of pantetheinase on the surfaces of HepG2 tumor cells, blood, and urine samples. Collectively, our findings indicate that VaninLP holds significant promise as a point-of-care tool for diagnosing early-stage kidney injury, as well as monitoring the progression of malaria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA