RESUMO
Horizontal transfer (HT) of genes between multicellular animals, once thought to be extremely rare, is being more commonly detected, but its global geographic trend and transfer mechanism have not been investigated. We discovered a unique HT pattern of Bovine-B (BovB) LINE retrotransposons in vertebrates, with a bizarre transfer direction from predators (snakes) to their prey (frogs). At least 54 instances of BovB HT were detected, which we estimate to have occurred across time between 85 and 1.3â Ma. Using comprehensive transcontinental sampling, our study demonstrates that BovB HT is highly prevalent in one geographical region, Madagascar, suggesting important regional differences in the occurrence of HTs. We discovered parasite vectors that may plausibly transmit BovB and found that the proportion of BovB-positive parasites is also high in Madagascar where BovB thus might be physically transported by parasites to diverse vertebrates, potentially including humans. Remarkably, in two frog lineages, BovB HT occurred after migration from a non-HT area (Africa) to the HT hotspot (Madagascar). These results provide a novel perspective on how the prevalence of parasites influences the occurrence of HT in a region, similar to pathogens and their vectors in some endemic diseases.
Assuntos
Transferência Genética Horizontal , Parasitos , Animais , Bovinos , Geografia , Parasitos/genética , Filogenia , Comportamento Predatório , Retroelementos , Vertebrados/genéticaRESUMO
The suborder Serpentes is divided into 2 infraorders, Scolecophidia and Alethinophidia, which diverged at an early stage of snake diversification. In this study, we examined karyotypes of 4 scolecophidian species (Letheobia simonii, Xerotyphlops vermicularis, Indotyphlops braminus, and Myriopholis macrorhyncha) and performed FISH with 18S-28S rDNA as well as microchromosomal and Z chromosome-linked genes of Elaphe quadrivirgata (Alethinophidia) to investigate the karyotype evolution in the scolecophidian lineage. Diploid chromosome numbers of X. vermicularis and L. simonii were 30 (16 macrochromosomes and 14 microchromosomes) and 32 (16 macrochromosomes and 16 microchromosomes), respectively. The karyotype of a female M. macrorhyncha consisted of 15 macrochromosomes and 19 microchromosomes, including a heterochromatic microchromosome, indicating the presence of a heteromorphic chromosome pair. E. quadrivirgata Z-linked genes mapped to chromosome 4 of M. macrorhyncha, not to the heteromorphic pair. Therefore, M. macrorhyncha may have differentiated ZW sex chromosomes which are not homologous to those of E. quadrivirgata. One of the E. quadrivirgata microchromosomal genes mapped to the terminal region of chromosome 4q in X. vermicularis, suggesting that fusions between microchromosomes and macrochromosomes occurred in this species. rDNA was localized in different macrochromosomal pairs in the 2 diploid scolecophidian snakes examined here, whereas the gene location in a microchromosomal pair was conserved in 5 alethinophidian species examined. These results might imply the occurrence of chromosome fusions in the scolecophidian lineages. In I. braminus, a unique parthenogenetic snake with a triploid karyotype (21 macrochromosomes and 21 microchromosomes), morphological heteromorphisms were identified in chromosomes 1 and 7. Such heteromorphisms in 2 chromosomes were also observed in individuals from distant locations in the broad distribution range of this species, suggesting that the heteromorphisms were fixed in the genome at an early stage of its speciation.
Assuntos
Cromossomos/genética , Cariotipagem/métodos , Cromossomos Sexuais/genética , Serpentes/genética , Animais , Mapeamento Cromossômico , Evolução Molecular , Feminino , Hibridização in Situ Fluorescente/métodos , Cariótipo , Masculino , Serpentes/classificação , Especificidade da EspécieRESUMO
BACKGROUND: Genes encoded in vertebrate mitochondrial DNAs are transcribed as a polycistronic transcript for both strands, which is later processed into individual mRNAs, rRNAs and tRNAs, followed by modifications, such as polyadenylation at the 3' end of mRNAs. Although mechanisms of the mitochondrial transcription and RNA processing have been extensively studied using some model organisms, structural variability of mitochondrial mRNAs across different groups of vertebrates is poorly understood. We conducted the high-throughput RNA sequencing to identify major polyadenylation sites for mitochondrial mRNAs in the Japanese grass lizard, Takydromus tachydromoides and compared the polyadenylation profiles with those identified similarly for 23 tetrapod species, featuring sauropsid taxa (reptiles and birds). RESULTS: As compared to the human, a major polyadenylation site for the NADH dehydrogenase subunit 5 mRNA of the grass lizard was located much closer to its stop codon, resulting in considerable truncation of the 3' untranslated region for the mRNA. Among the other sauropsid taxa, several distinct polyadenylation profiles from the human counterpart were found for different mRNAs. They included various truncations of the 3' untranslated region for NADH dehydrogenase subunit 5 mRNA in four taxa, bird-specific polyadenylation of the light-strand-transcribed NADH dehydrogenase subunit 6 mRNA, and the combination of the ATP synthase subunit 8/6 mRNA with a neighboring mRNA into a tricistronic mRNA in the side-necked turtle Pelusios castaneus. In the last case of P. castaneus, as well as another example for NADH dehydrogenase subunit 1 mRNAs of some birds, the association between the polyadenylation site change and the gene overlap was highlighted. The variations in the polyadenylation profile were suggested to have arisen repeatedly in diverse sauropsid lineages. Some of them likely occurred in response to gene rearrangements in the mitochondrial DNA but the others not. CONCLUSIONS: These results demonstrate structural variability of mitochondrial mRNAs in sauropsids. The efficient and comprehensive characterization of the mitochondrial mRNAs will contribute to broaden our understanding of their structural and functional evolution.
Assuntos
Aves/genética , Evolução Molecular , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Poliadenilação/genética , RNA Mensageiro/genética , Répteis/genética , Animais , RNA Mitocondrial , Análise de Sequência de RNARESUMO
Rasbora lateristriata is a primary freshwater fish described from Java Island of Indonesia but its taxonomy, phylogeny, and distributional boundary have not been fully studied. Rasbora baliensis was described as a species endemic to Balinese lakes but its taxonomic status has been controversial in relation to R. lateristriata. Here, we collected Rasbora fishes from various freshwater localities of Java Island, as well as five neighboring islands to conduct molecular and morphological analyses on their phylogenetic relationships. Both molecular analyses using two mitochondrial and two nuclear gene sequences and morphological analyses featuring the body color pattern consistently support that the currently recognized R. lateristriata forms a species complex including at least four major lineages that possibly represent different species. In one of the major lineages, Balinese individuals cluster with those from East Javanese, Lombok and Sumbawa localities, calling for taxonomic revision on R. baliensis. The other three major lineages occur in distinct regions of central, west-central, and western Java and they can be clearly distinguished by the combination of pigmentation patterns in the basicaudal blotch and the supra anal pigment. Our molecular phylogeny suggests west-to-east divergences of the R. lateristriata species complex in Java Island from the late Miocene to Plio-Pleistocene before it finally crossed Wallace's Line, colonizing Lombok and Sumbawa Islands very recently.
Assuntos
Cyprinidae/classificação , Animais , Cyprinidae/genética , DNA Mitocondrial , Especiação Genética , Indonésia , Ilhas , Filogenia , FilogeografiaRESUMO
BACKGROUND: Vertebrate mitochondrial genomes (mitogenomes) are 16-18 kbp double-stranded circular DNAs that encode a set of 37 genes. The arrangement of these genes and the major noncoding region is relatively conserved through evolution although gene rearrangements have been described for diverse lineages. The tandem duplication-random loss model has been invoked to explain the mechanisms of most mitochondrial gene rearrangements. Previously reported mitogenomic sequences for geckos rarely included gene rearrangements, which we explore in the present study. RESULTS: We determined seven new mitogenomic sequences from Gekkonidae using a high-throughput sequencing method. The Tropiocolotes tripolitanus mitogenome involves a tandem duplication of the gene block: tRNAArg, NADH dehydrogenase subunit 4L, and NADH dehydrogenase subunit 4. One of the duplicate copies for each protein-coding gene may be pseudogenized. A duplicate copy of the tRNAArg gene appears to have been converted to a tRNAGln gene by a C to T base substitution at the second anticodon position, although this gene may not be fully functional in protein synthesis. The Stenodactylus petrii mitogenome includes several tandem duplications of tRNALeu genes, as well as a translocation of the tRNAAla gene and a putative origin of light-strand replication within a tRNA gene cluster. Finally, the Uroplatus fimbriatus and U. ebenaui mitogenomes feature the apparent loss of the tRNAGlu gene from its original position. Uroplatus fimbriatus appears to retain a translocated tRNAGlu gene adjacent to the 5' end of the major noncoding region. CONCLUSIONS: The present study describes several new mitochondrial gene rearrangements from Gekkonidae. The loss and reassignment of tRNA genes is not very common in vertebrate mitogenomes and our findings raise new questions as to how missing tRNAs are supplied and if the reassigned tRNA gene is fully functional. These new examples of mitochondrial gene rearrangements in geckos should broaden our understanding of the evolution of mitochondrial gene arrangements.
Assuntos
Genoma Mitocondrial , RNA de Transferência/genética , Répteis/genética , Animais , Sequência de Bases , Códon , Rearranjo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , NADH Desidrogenase/química , NADH Desidrogenase/genética , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA de Transferência/química , RNA de Transferência/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
The air sac catfish, Heteropneustes fossilis (Siluriformes: Heteropneustidae), is widely distributed in freshwaters of the Indian subcontinent and mainland southeast Asia. No comprehensive molecular studies that cover the broad distributional areas have been carried out to date. Here, we conducted molecular phylogenetic analyses using both mitochondrial and nuclear gene sequences to suggest that the Heteropneustes fossilis species complex consists of three clades that may potentially be separate species with distinct geographical distribution (southeast Asia, northeastern India, and southwestern India). The first and second clades are more closely related to each other than they are to the third clade. Within the first clade there is a basal divergence of a subclade consisting of individuals from the Upper Irrawaddy River basin of Myanmar, which share some morphological traits with members of the Indian clades. Our molecular and morphological data are congruent with hypotheses that the Early-Middle Miocene disconnection between the paleo-Tsangpo River and the Irrawaddy River caused the vicariant divergence between southeast Asian and northeastern Indian clades, and that the southeast Asian Heteropneustes originated from the Upper Irrawaddy.
Assuntos
Evolução Biológica , Peixes-Gato/classificação , Filogenia , Animais , Sudeste Asiático , Peixes-Gato/anatomia & histologia , Núcleo Celular/genética , DNA Mitocondrial/genética , Índia , Modelos Genéticos , Análise de Sequência de DNARESUMO
In efforts to prevent extinction, resource managers are often tasked with increasing genetic diversity in a population of concern to prevent inbreeding depression or improve adaptive potential in a changing environment. The assumption that all small populations require measures to increase their genetic diversity may be unwarranted, and limited resources for conservation may be better utilized elsewhere. We test this assumption in a case study focused on the peregrine falcon (Falco peregrinus), a cosmopolitan circumpolar species with 19 named subspecies. We used whole-genome resequencing to generate over two million single nucleotide polymorphisms (SNPs) from multiple individuals of all peregrine falcon subspecies. Our analyses revealed extensive variation among subspecies, with many island-restricted and nonmigratory populations possessing lower overall genomic diversity, elevated inbreeding coefficients (F ROH)-among the highest reported, and extensive runs of homozygosity (ROH) compared to mainland and migratory populations. Similarly, the majority of subspecies that are either nonmigratory or restricted to islands show a much longer history of low effective population size (N e). While mutational load analyses indicated an increased proportion of homozygous-derived deleterious variants (i.e., drift load) among nonmigrant and island populations compared to those that are migrant or reside on the mainland, no significant differences in the proportion of heterozygous deleterious variants (i.e., inbreeding load) was observed. Our results provide evidence that high levels of inbreeding may not be an existential threat for some populations or taxa. Additional factors such as the timing and severity of population declines are important to consider in management decisions about extinction potential.
RESUMO
BACKGROUND: Extant sauropsids (reptiles and birds) are divided into two major lineages, the lineage of Testudines (turtles) and Archosauria (crocodilians and birds) and the lineage of Lepidosauria (tuatara, lizards, worm lizards and snakes). Karyotypes of these sauropsidan groups generally consist of macrochromosomes and microchromosomes. In chicken, microchromosomes exhibit a higher GC-content than macrochromosomes. To examine the pattern of intra-genomic GC heterogeneity in lepidosaurian genomes, we constructed a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 183 cDNA clones by fluorescence in situ hybridization, and examined the correlation between the GC-content of exonic third codon positions (GC3) of the genes and the size of chromosomes on which the genes were localized. RESULTS: Although GC3 distribution of snake genes was relatively homogeneous compared with those of the other amniotes, microchromosomal genes showed significantly higher GC3 than macrochromosomal genes as in chicken. Our snake cytogenetic map also identified several conserved segments between the snake macrochromosomes and the chicken microchromosomes. Cross-species comparisons revealed that GC3 of most snake orthologs in such macrochromosomal segments were GC-poor (GC3 < 50%) whereas those of chicken orthologs in microchromosomes were relatively GC-rich (GC3 ≥ 50%). CONCLUSION: Our results suggest that the chromosome size-dependent GC heterogeneity had already occurred before the lepidosaur-archosaur split, 275 million years ago. This character was probably present in the common ancestor of lepidosaurs and but lost in the lineage leading to Anolis during the diversification of lepidosaurs. We also identified several genes whose GC-content might have been influenced by the size of the chromosomes on which they were harbored over the course of sauropsid evolution.
Assuntos
Composição de Bases/genética , Cromossomos/genética , Evolução Molecular , Genoma/genética , Serpentes/genética , Animais , Mapeamento Cromossômico , Códon/genética , Análise Citogenética , DNA Complementar/genética , Etiquetas de Sequências Expressas , Hibridização in Situ Fluorescente , Especificidade da EspécieRESUMO
Approximately 2.4 kbp of mitochondrial DNA was sequenced from 9 individuals of Uromastyx ornata philbyi originating from Taif, Namas, Al-Baha, and Jazan in southwestern Saudi Arabia. The sequenced regions cover eight tRNA genes (tRNA(Gln), tRNA(Ile), tRNA(Met), tRNA(Trp), tRNA(Ala), tRNA(Asn), tRNA(Cys), and tRNA(Tyr)) and two protein-coding genes (NADH dehydrogenase subunit 2 and cytochrome b). U. ornata philbyi had an insertion of 170 bp length between tRNA(Gln) and tRNA(Ile) genes. The first 128 bp of this insertion was similar to the one identified earlier in U. ornata ornata and can be folded into a stem-and-loop structure, which was less stable in U. ornata philbyi than in U. ornata ornata, or the second tRNA(Gln) gene. The next 42 bp of the insertion was unique in U. ornata philbyi and additionally retained a stable stem-and-loop structure. Most base substitutions found in the sequenced genes were synonymous transitions rather than transversions. Tree analyses supported the sister group relationship between the two U. ornata subspecies and divided U. ornata philbyi into two groups: Taif+Namas group in the east of Sarawat and Al-Baha+Jazan group in the west of Sarawat. These molecular data are in agreement with current classification of U. ornata.
RESUMO
Mitochondrial genomes of four elapid snakes (three marine species [Emydocephalus ijimae, Hydrophis ornatus, and Hydrophis melanocephalus], and one terrestrial species [Sinomicrurus japonicus]) were completely sequenced by a combination of Sanger sequencing, next-generation sequencing and Nanopore sequencing. Nanopore sequencing was especially effective in accurately reading through long tandem repeats in these genomes. This led us to show that major noncoding regions in the mitochondrial genomes of those three sea snakes contain considerably long tandem duplications, unlike the mitochondrial genomes previously reported for same and other sea snake species. We also found a transposition of the light-strand replication origin within a tRNA gene cluster for the three sea snakes. This change can be explained by the Tandem Duplication-Random Loss model, which was further supported by remnant intervening sequences between tRNA genes. Mitochondrial genomes of true snakes (Alethinophidia) have been shown to contain duplicate major noncoding regions, each of which includes the control region necessary for regulating the heavy-strand replication and transcription from both strands. However, the control region completely disappeared from one of the two major noncoding regions for two Hydrophis sea snakes, posing evolutionary questions on the roles of duplicate control regions in snake mitochondrial genomes. The timing and molecular mechanisms for these changes are discussed based on the elapid phylogeny.
Assuntos
Genoma Mitocondrial , Hydrophiidae , Animais , Elapidae/genética , Genoma Mitocondrial/genética , Hydrophiidae/genética , Filogenia , RNA de Transferência/genéticaRESUMO
BACKGROUND: Acrodonta consists of Agamidae and Chamaeleonidae that have the characteristic acrodont dentition. These two families and Iguanidae sensu lato are members of infraorder Iguania. Phylogenetic relationships and historical biogeography of iguanian lizards still remain to be elucidated in spite of a number of morphological and molecular studies. This issue was addressed by sequencing complete mitochondrial genomes from 10 species that represent major lineages of acrodont lizards. This study also provided a good opportunity to compare molecular evolutionary modes of mitogenomes among different iguanian lineages. RESULTS: Acrodontan mitogenomes were found to be less conservative than iguanid counterparts with respect to gene arrangement features and rates of sequence evolution. Phylogenetic relationships were constructed with the mitogenomic sequence data and timing of gene rearrangements was inferred on it. The result suggested highly lineage-specific occurrence of several gene rearrangements, except for the translocation of the tRNAPro gene from the 5' to 3' side of the control region, which likely occurred independently in both agamine and chamaeleonid lineages. Phylogenetic analyses strongly suggested the monophyly of Agamidae in relation to Chamaeleonidae and the non-monophyly of traditional genus Chamaeleo within Chamaeleonidae. Uromastyx and Brookesia were suggested to be the earliest shoot-off of Agamidae and Chamaeleonidae, respectively. Together with the results of relaxed-clock dating analyses, our molecular phylogeny was used to infer the origin of Acrodonta and historical biogeography of its descendant lineages. Our molecular data favored Gondwanan origin of Acrodonta, vicariant divergence of Agamidae and Chamaeleonidae in the drifting India-Madagascar landmass, and migration of the Agamidae to Eurasia with the Indian subcontinent, although Laurasian origin of Acrodonta was not strictly ruled out. CONCLUSIONS: We detected distinct modes of mitogenomic evolution among iguanian families. Agamidae was highlighted in including a number of lineage-specific mitochondrial gene rearrangements. The mitogenomic data provided a certain level of resolution in reconstructing acrodontan phylogeny, although there still remain ambiguous relationships. Our biogeographic implications shed a light on the previous hypothesis of Gondwanan origin of Acrodonta by adding some new evidence and concreteness.
Assuntos
Evolução Molecular , Rearranjo Gênico , Genoma Mitocondrial , Lagartos/genética , Filogenia , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Geografia , Lagartos/classificação , RNA de Transferência de Prolina/genética , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
The continental distributions of freshwater fishes in the family Notopteridae (Osteoglossomorpha) across Africa, India, and Southeast Asia constitute a long standing and enigmatic problem of freshwater biogeography. The migrational pathway of the Asian notopterids has been discussed in light of two competing schemes: the first posits recent transcontinental dispersal while the second relies on distributions being shaped by ancient vicariance associated with plate-tectonic events. In this study, we determined complete mitochondrial DNA sequences from 10 osteoglossomorph fishes to estimate phylogenetic relationships using partitioned Bayesian and maximum likelihood methods and divergence dates of the family Notopteridae with a partitioned Bayesian approach. We used six species representing the major lineages of the Notopteridae and seven species from the remaining osteoglossomorph families. Fourteen more-derived teleosts, nine basal actinopterygians, two coelacanths, and one shark were used as outgroups. Phylogenetic analyses indicated that the African and Asian notopterids formed a sister group to each other and that these notopterids were a sister to a clade comprising two African families (Mormyridae and Gymnarchidae). Estimated divergence time between the African and Asian notopterids dated back to the early Cretaceous when India-Madagascar separated from the African part of Gondwanaland. Thus, estimated time of divergence based on the molecular evidence is at odds with the recent dispersal model. It can be reconciled with the geological and paleontological evidence to support the vicariance model in which the Asian notopterids diverged from the African notopterids in Gondwanaland and migrated into Eurasia on the Indian subcontinent from the Cretaceous to the Tertiary. However, we could not exclude an alternative explanation that the African and Asian notopterids diverged in Pangea before its complete separation into Laurasia and Gondwanaland, to which these two lineages were later confined, respectively.
Assuntos
Evolução Molecular , Peixes/genética , Genômica , Filogenia , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Peixes/classificação , Especiação Genética , Genoma Mitocondrial , Geografia , Funções Verossimilhança , Modelos Genéticos , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
Crocodilians have several unique karyotypic features, such as small diploid chromosome numbers (30-42) and the absence of dot-shaped microchromosomes. Of the extant crocodilian species, the Siamese crocodile (Crocodylus siamensis) has no more than 2n = 30, comprising mostly bi-armed chromosomes with large centromeric heterochromatin blocks. To investigate the molecular structures of C-heterochromatin and genomic compartmentalization in the karyotype, characterized by the disappearance of tiny microchromosomes and reduced chromosome number, we performed molecular cloning of centromeric repetitive sequences and chromosome mapping of the 18S-28S rDNA and telomeric (TTAGGG)( n ) sequences. The centromeric heterochromatin was composed mainly of two repetitive sequence families whose characteristics were quite different. Two types of GC-rich CSI-HindIII family sequences, the 305 bp CSI-HindIII-S (G+C content, 61.3%) and 424 bp CSI-HindIII-M (63.1%), were localized to the intensely PI-stained centric regions of all chromosomes, except for chromosome 2 with PI-negative heterochromatin. The 94 bp CSI-DraI (G+C content, 48.9%) was tandem-arrayed satellite DNA and localized to chromosome 2 and four pairs of small-sized chromosomes. The chromosomal size-dependent genomic compartmentalization that is supposedly unique to the Archosauromorpha was probably lost in the crocodilian lineage with the disappearance of microchromosomes followed by the homogenization of centromeric repetitive sequences between chromosomes, except for chromosome 2.
Assuntos
Jacarés e Crocodilos/genética , Centrômero/genética , Heterocromatina/genética , Animais , Composição de Bases , Sequência de Bases , Southern Blotting , Mapeamento Cromossômico , Clonagem Molecular , Hibridização in Situ Fluorescente , Cariotipagem , Dados de Sequência Molecular , RNA Ribossômico/genética , Análise de Sequência de DNA , Telômero/genéticaRESUMO
BACKGROUND: Recent advances in DNA sequencing and computation offer the opportunity for reliable estimates of divergence times between organisms based on molecular data. Bayesian estimations of divergence times that do not assume the molecular clock use time constraints at multiple nodes, usually based on the fossil records, as major boundary conditions. However, the fossil records of bony fishes may not adequately provide effective time constraints at multiple nodes. We explored an alternative source of time constraints in teleostean phylogeny by evaluating a biogeographic hypothesis concerning freshwater fishes from the family Cichlidae (Perciformes: Labroidei). RESULTS: We added new mitogenomic sequence data from six cichlid species and conducted phylogenetic analyses using a large mitogenomic data set. We found a reciprocal monophyly of African and Neotropical cichlids and their sister group relationship to some Malagasy taxa (Ptychochrominae sensu Sparks and Smith). All of these taxa clustered with a Malagasy + Indo/Sri Lankan clade (Etroplinae sensu Sparks and Smith). The results of the phylogenetic analyses and divergence time estimations between continental cichlid clades were much more congruent with Gondwanaland origin and Cretaceous vicariant divergences than with Cenozoic transmarine dispersal between major continents. CONCLUSION: We propose to add the biogeographic assumption of cichlid divergences by continental fragmentation as effective time constraints in dating teleostean divergence times. We conducted divergence time estimations among teleosts by incorporating these additional time constraints and achieved a considerable reduction in credibility intervals in the estimated divergence times.
Assuntos
Ciclídeos/classificação , Ciclídeos/genética , Evolução Molecular , Genoma Mitocondrial/genética , Filogenia , Animais , Biodiversidade , DNA Mitocondrial/genética , Geografia , Dados de Sequência Molecular , Fatores de TempoRESUMO
Mitochondrial DNA sequences of approximately 2.3 kbp including the complete NADH dehydrogenase subunit 2 gene and its flanking genes, as well as parts of 12S and 16S rRNA genes were determined from major species of the eyelid gecko family Eublepharidae sensu [Kluge, A.G. 1987. Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool. Univ. Michigan 173, 1-54.]. In contrast to previous morphological studies, phylogenetic analyses based on these sequences supported that Eublepharidae and Gekkonidae form a sister group with Pygopodidae, raising the possibility of homoplasious character change in some key features of geckos, such as reduction of movable eyelids and innovation of climbing toe pads. The phylogenetic analyses also provided a well-resolved tree for relationships between the eublepharid species. The Bayesian estimation of divergence times without assuming the molecular clock suggested the Jurassic divergence of Eublepharidae from Gekkonidae and radiations of most eublepharid genera around the Cretaceous. These dating results appeared to be robust against some conditional changes for time estimation, such as gene regions used, taxon representation, and data partitioning. Taken together with geological evidence, these results support the vicariant divergence of Eublepharidae and Gekkonidae by the breakup of Pangea into Laurasia and Gondwanaland, and recent dispersal of two African eublepharid genera from Eurasia to Africa after these landmasses were connected in the Early Miocene.
Assuntos
Evolução Molecular , Genes Mitocondriais/genética , Lagartos/classificação , Lagartos/genética , Animais , Sequência de Bases , DNA Mitocondrial/genética , DNA Ribossômico/genética , Lagartos/anatomia & histologia , Dados de Sequência Molecular , NADH Desidrogenase/genética , Filogenia , RNA Ribossômico/genética , RNA Ribossômico 16S/genéticaRESUMO
The mitochondrial genomes of the Komodo monitor (Varanus komodoensis) and the Nile monitor (V. niloticus) were previously shown to have an extensive gene rearrangement. Here, we show that this gene arrangement widely occurs in varanid taxa originated from Africa, Asia and Australasia. Based on phylogenetic relationships of the varanids constructed using mitochondrial DNA sequences encoding the NADH dehydrogenase subunit 2 gene and seven flanking tRNA genes, we estimated their divergence times by the Bayesian method without assuming the molecular clock. The results suggested that the mitochondrial DNA gene rearrangement took place once in an ancestral varanid lineage in the Paleocene or earlier. Our results are more consistent with Cenozoic over-water dispersal of Southeast Asian varanids across the Indonesian Archipelago rather than the Cretaceous Gondwanan vicariance for the origin of Australasian varanids.
Assuntos
Rearranjo Gênico , Genes Mitocondriais , Lagartos/genética , Animais , DNA Mitocondrial/química , Evolução Molecular , Ordem dos Genes , Geografia , Lagartos/classificação , Filogenia , Dinâmica PopulacionalRESUMO
The whole mitochondrial genome of a small cyprinid freshwater fish Pectenocypris sp. collected from Serkap River, Central Sumatra, Indonesia was sequenced. This mitochondrial genome consisted of 16,589 bp and included 37 genes in the same order as in many other vertebrates including the human. Phylogenetic analysis suggested that this taxon clusters with Boraras maculatus among several Rasbora species.
RESUMO
Artificial manipulation of incubation temperature has been proposed as a potential strategy for mitigating the effects of climate change on sea turtles for which sex determination is temperature-dependent, but thermal manipulation may also affect hatchling survival. Here, we demonstrated that incubation and water temperatures influenced several performance traits that contribute to the survival of loggerhead sea turtles (Caretta caretta) during the post-hatchling dispersal phase. Hatchlings from warm incubation temperatures (31 °C) had significantly shorter incubation periods, higher initial swimming performance, lower sustained swimming performance, and lower growth rates during the first three weeks post-hatching, as well as higher blood glucose concentrations, than those from cool incubation temperatures (27.5 °C). Hatchlings in warm water temperatures (30 °C) exhibited significantly greater swimming performance than those in cool water temperatures (27 °C). Our results indicated that altering incubation temperatures indirectly influences the survival of loggerhead hatchlings by modifying their swimming performance and growth rates, which may affect hatchling predator-avoidance capability. Moreover, thermal manipulation may alter the incubation period, exposing hatchling to water temperatures that they would not otherwise normally experience, which may affect swimming performance. Our results suggest that such conservation strategies may influence their survival, and thus should be carefully considered.
Assuntos
Oviposição/fisiologia , Água do Mar/química , Natação/fisiologia , Temperatura , Tartarugas/fisiologia , Animais , Mudança Climática , Feminino , Masculino , Razão de MasculinidadeRESUMO
In placental mammals and birds, molecular data generally support a view that they diverged into their ordinal groups in good response to mid-Cretaceous continental fragmentations. However, such divergence patterns have rarely been studied for reptiles for which phylogenetic relationships among their major groups have not yet been established molecularly. Here, I determined complete or nearly complete mitochondrial DNA sequences from seven lizard families and reconstructed phylogenetic relationships between major lizard families. When snakes were included, maximum likelihood analysis did not support a morphological view of the snakes-varanoids affinity, although several other competing hypotheses on the position of snakes still cannot be discriminated presumably due to extremely long branches of the snake lineages. I also conducted clock-free Bayesian analyses to show that divergence times between major lizard families were centered in Triassic-Jurassic times. Thus, lizards include much deeper divergences than the mammals and birds and they appear to have already radiated into various families prior to the mid-Cretaceous major continental fragmentation.
Assuntos
DNA Mitocondrial/genética , Lagartos/genética , Filogenia , Animais , DNA Mitocondrial/química , Especiação Genética , Variação Genética , Lagartos/classificação , Dados de Sequência Molecular , Análise de Sequência de DNA , Fatores de TempoRESUMO
The mitochondrial genome of a small freshwater fish Rasbora argyrotaenia from Java Island, Indonesia, was completely sequenced. This mitochondrial genome had 16,740 bp in length and consisted of 37 genes in the typical vertebrate mitochondrial gene arrangement. Phylogenetic analysis showed that R. argyrotaenia is more closely related to R. borapetensis than to other Javanese rasboras, R. aprotaenia and R. lateristriata.