Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biotechnol ; 343: 62-70, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34838616

RESUMO

Presence of methanotrophs in diverse environmental habitats helps to reduce emissions of greenhouse gas like methane. Isolation and culture of undiscovered wealth of methanotrophic organisms can help in exploitation of these organisms in value added products. The present study focuses on the enrichment of methanotroph dominated mixed microbial community by use of three stage strategy of revival, proliferation, and segregation. During the enrichment process amplicon sequencing of 16 s rRNA V3-V4 region showed relative abundance of mixed culture comprising single methanotrophic species of Methylocystis genus (88.92%) along with only three other species. Methylocystis dominant mixed culture (MMI-11) was observed to produce polyhydroxyalkanoates (PHA). During studies to identify favourable culture conditions, nitrate was found to be preferred nitrogen source for growth and PHA production. Cell growth ability to produce PHA was also evaluated at 14 L fermentor by supplying gas using continuous bubbling and through pressurization in the headspace. The mixed methanotrophic culture was found to accumulate maximum of 22.20% polyhydroxybutyrate (PHB) under nitrate limited condition. The molecular weight of PHB was found to be 2.221 × 105 g mol-1 with polydispersity of 1.82.


Assuntos
Methylocystaceae , Oryza , Poli-Hidroxialcanoatos , Reatores Biológicos , Metano
2.
3 Biotech ; 6(2): 126, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330198

RESUMO

Pretreatment and enzymatic hydrolysis play a critical role in the economic production of sugars and fuels from lignocellulosic biomass. In this study, we evaluated diverse pilot-scale pretreatments and different post-pretreatment strategies for the production of fermentable sugars from sugarcane bagasse. For the pretreatment of bagasse at pilot-scale level, steam explosion without catalyst and combination of sulfuric and oxalic acids at low and high loadings were used. Subsequently, to enhance the efficiency of enzymatic hydrolysis of the pretreated bagasse, three different post-pretreatment process schemes were investigated. In the first scheme (Scheme 1), enzymatic hydrolysis was conducted on the whole pretreated slurry, without treatments such as washing or solid-liquid separation. In the second scheme (Scheme 2), the pretreated slurry was first pressure filtered to yield a solid and liquid phase. Following filtration, the separated liquid phase was remixed with the solid wet cake to generate slurry, which was then subsequently used for enzymatic hydrolysis. In the third scheme (Scheme 3), the pretreated slurry was washed with more water and filtered to obtain a solid and liquid phase, in which only the former was subjected to enzymatic hydrolysis. A 10 % higher enzymatic conversion was obtained in Scheme 2 than Scheme 1, while Scheme 3 resulted in only a 5-7 % increase due to additional washing unit operation and solid-liquid separation. Dynamic light scattering experiments conducted on post-pretreated bagasse indicate decrease of particle size due to solid-liquid separation involving pressure filtration provided increased the yield of C6 sugars. It is anticipated that different process modification methods used in this study before the enzymatic hydrolysis step can make the overall cellulosic ethanol process effective and possibly cost effective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA