Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecology ; 97(1): 124-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27008782

RESUMO

Ecological theory, developed largely from ungulates and grassland systems, predicts that herbivory accelerates nutrient cycling more in productive than unproductive systems. This prediction may be important for understanding patterns of ecosystem change over time and space, but its applicability to other ecosystems and types of herbivore remain uncertain. We estimated fluxes of nitrogen (N) and phosphorus (P) from herbivory of a common tree species (Betula pubescens) by a common species of herbivorous insect along a -5000-yr boreal chronosequence. Contrary to established theory, fluxes of N and P via herbivory increased along the chronosequence despite a decline in plant productivity. The herbivore-mediated N and P fluxes to the soil are comparable to the main alternative pathway for these nutrients via tree leaf litterfall. We conclude that insect herbivores can make large contributions to nutrient cycling even in unproductive systems, and influence the rate and pattern of ecosystem development, particularly in systems with low external nutrient inputs.


Assuntos
Florestas , Herbivoria/fisiologia , Insetos/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Animais , Monitoramento Ambiental , Ilhas , Nitrogênio/química , Fósforo/química , Suécia
2.
Nat Ecol Evol ; 2(9): 1443-1448, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013133

RESUMO

Effective societal responses to rapid climate change in the Arctic rely on an accurate representation of region-specific ecosystem properties and processes. However, this is limited by the scarcity and patchy distribution of field measurements. Here, we use a comprehensive, geo-referenced database of primary field measurements in 1,840 published studies across the Arctic to identify statistically significant spatial biases in field sampling and study citation across this globally important region. We find that 31% of all study citations are derived from sites located within 50 km of just two research sites: Toolik Lake in the USA and Abisko in Sweden. Furthermore, relatively colder, more rapidly warming and sparsely vegetated sites are under-sampled and under-recognized in terms of citations, particularly among microbiology-related studies. The poorly sampled and cited areas, mainly in the Canadian high-Arctic archipelago and the Arctic coastline of Russia, constitute a large fraction of the Arctic ice-free land area. Our results suggest that the current pattern of sampling and citation may bias the scientific consensuses that underpin attempts to accurately predict and effectively mitigate climate change in the region. Further work is required to increase both the quality and quantity of sampling, and incorporate existing literature from poorly cited areas to generate a more representative picture of Arctic climate change and its environmental impacts.


Assuntos
Mudança Climática , Regiões Árticas , Ecossistema , Viés de Seleção , Análise Espacial
3.
PLoS One ; 11(6): e0157136, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27270445

RESUMO

Most plant biomass allocation studies have focused on allocation to shoots versus roots, and little is known about drivers of allocation for aboveground plant organs. We explored the drivers of within-and between-species variation of aboveground biomass allocation across a strong environmental resource gradient, i.e., a long-term chronosequence of 30 forested islands in northern Sweden across which soil fertility and plant productivity declines while light availability increases. For each of the three coexisting dominant understory dwarf shrub species on each island, we estimated the fraction of the total aboveground biomass produced year of sampling that was allocated to sexual reproduction (i.e., fruits), leaves and stems for each of two growing seasons, to determine how biomass allocation responded to the chronosequence at both the within-species and whole community levels. Against expectations, within-species allocation to fruits was least on less fertile islands, and allocation to leaves at the whole community level was greatest on intermediate islands. Consistent with expectations, different coexisting species showed contrasting allocation patterns, with the species that was best adapted for more fertile conditions allocating the most to vegetative organs, and with its allocation pattern showing the strongest response to the gradient. Our study suggests that co-existing dominant plant species can display highly contrasting biomass allocations to different aboveground organs within and across species in response to limiting environmental resources within the same plant community. Such knowledge is important for understanding how community assembly, trait spectra, and ecological processes driven by the plant community vary across environmental gradients and among contrasting ecosystems.


Assuntos
Fenômenos Fisiológicos Vegetais , Biomassa , Clima , Florestas , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA