Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2404085, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032141

RESUMO

A fish-bone-shaped and thermochemically stable 2D metal-organic framework (MOF) with multimodal active center-decked pore-wall is devised. Redox-active [Co2(COO)4] node and thiazolo[5,4-d]thiazole functionalization benefit this mixed-ligand MOF exhibiting electrochemical water oxidation with 375 mV overpotential at 10 mA cm-2 current density and 78 mV per dec Tafel slope in alkaline medium. Pair of oppositely oriented carboxylic acids aids postmetalation with transition metal ions to engineer heterobimetallic materials. Notably, overpotential of Ni2+ grafted triple-redox composite reduces to 270 mV with twofold declined Tafel slope than the parent MOF, ranking among the best-reported values, and outperforming majority of related catalysts. Significantly, turnover frequency and charge transfer resistance display 35.5 and 1.4-fold upsurge, respectively, with much uplifted chronopotentiometric stability and increase active surface area owing to synergistic Co(II)-Ni(II) coupling. The simultaneous presence of ─COOH and nitrogen-rich moieties renders this hydrogen-bonded MOF as acid-base synergistic catalyst for recyclable deacetalization-Knoevenagel reaction with >99% product yield under solvent-free mild condition. Besides control experiments, unique role of ─COOH as hydrogen-bond donor site in substrate activation is validated from comparing the performances of molecular-shearing approach-derived structurally similar unfunctionalized MOF, and the heterobimetallic composite. To the best of tandem Knoevenagel condensation, larger-sized acetal exhibits poor yield of α,ß-unsaturated dicyanides, and demonstrates pore-fitting-mediated size-selectivity.

2.
Small ; : e2403908, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970558

RESUMO

Hydrogen is a fuel of the future that has the potential to replace conventional fossil fuels in several applications. The quickest and most effective method of producing pure hydrogen with no carbon emissions is water electrolysis. Developing highly active electrocatalysts is crucial due to the slow kinetics of oxygen and hydrogen evolution, which limit the usage of precious metals in water splitting. Interfacial engineering of heterostructures has sparked widespread interest in improving charge transfer efficiency and optimizing adsorption/desorption energetics. The emergence of a built-in-electric field between RuO2 and MgFe-LDH improves the catalytic efficiency toward water splitting reaction. However, LDH-based materials suffer from poor conductivity, necessitating the design of 1D materials by integration of RuO2/ MgFe-LDH to enhance catalytic properties through large surface areas and high electronic conductivity. Experimental results demonstrate lower overpotentials (273 and 122 mV at 10 mA cm-2) and remarkable stability (60 h) for the RuO2/MgFe-LDH/Fiber heterostructure in OER (1 m KOH) and HER (0.5 m H2SO4) reactions. Density functional theory (DFT) unveils a synergistic mechanism at the RuO2/MgFe-LDH interface, leading to enhanced catalytic activity in OER and improved adsorption energy for hydrogen atoms, thereby facilitating HER catalysis.

3.
Small ; : e2402403, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682732

RESUMO

Viologen-based covalent organic networks represent a burgeoning class of materials distinguished by their captivating properties. Here, supramolecular chemistry is harnessed to fabricate polyrotaxanated ionic covalent organic polymers (iCOP) through a Schiff-base condensation reaction under solvothermal conditions. The reaction between 1,1'-bis(4-aminophenyl)-[4,4'-bipyridine]-1,1'-diium dichloride (DPV-NH2) and 1,3,5-triformylphloroglucinol (TPG) in various solvents yields an iCOP-1 and iCOP-2. Likewise, employing cucurbit[7]uril (CB[7]) in the reaction yielded polyrotaxanated iCOPs, denoted as iCOP-CB[7]-1 and iCOP-CB[7]-2. All four iCOPs exhibit exceptional stability under the acidic and basic conditions. iCOP-CB[7]-2 displays outstanding electrocatalytic Oxygen Evolution Reaction (OER) performance, demanding an overpotential of 296 and 332 mV at 10 and 20 mA cm-2, respectively. Moreover, the CB[7] integrated iCOP-2 exhibits a long-term stable nature for 30 h in 1 m KOH environment. Further, intrinsic activity studies like TOF show a 4.2-fold increase in generation of oxygen (O2) molecules than the bare iCOP-2. Also, it is found that iCOP-CB[7]-2 exhibits a high specific (19.48 mA cm-2) and mass activity (76.74 mA mg-1) at 1.59 V versus RHE. Operando-EIS study evident that iCOP-CB[7]-2 commences OER at a relatively low applied potential of 1.5 V versus RHE. These findings pave the way for a novel approach to synthesizing various mechanically interlocked molecules through straightforward solvothermal conditions.

4.
Inorg Chem ; 63(11): 4883-4897, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494956

RESUMO

The reaction of Co(OAc)2·6H2O with 2,2'-[{(1E,1'E)-pyridine-2,6-diyl-bis(methaneylylidene)bis(azaneylylidene)}diphenol](LH2) a multisite coordination ligand and Et3N in a 1:2:3 stoichiometric ratio forms a tetranuclear complex Co4(L)2(µ-η1:η1-OAc)2(η2-OAc)2]· 1.5 CH3OH· 1.5 CHCl3 (1). Based on X-ray diffraction investigations, complex 1 comprises a distorted Co4O4 cubane core consisting of two completely deprotonated ligands [L]2- and four acetate ligands. Two distinct types of CoII centers exist in the complex, where the Co(2) center has a distorted octahedral geometry; alternatively, Co(1) has a distorted pentagonal-bipyramidal geometry. Analysis of magnetic data in 1 shows predominant antiferromagnetic coupling (J = -2.1 cm-1), while the magnetic anisotropy is the easy-plane type (D1 = 8.8, D2 = 0.76 cm-1). Furthermore, complex 1 demonstrates an electrochemical oxygen evolution reaction (OER) with an overpotential of 325 mV and Tafel slope of 85 mV dec-1, required to attain a current density of 10 mA cm-2 and moderate stability under alkaline conditions (pH = 14). Electrochemical impedance spectroscopy studies reveal that compound 1 has a charge transfer resistance (Rct) of 2.927 Ω, which is comparatively lower than standard Co3O4 (5.242 Ω), indicating rapid charge transfer kinetics between electrode and electrolyte solution that enhances higher catalytic activity toward OER kinetics.

5.
Chemistry ; 29(58): e202301409, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37492966

RESUMO

Although nitrite-to-NO transformation at various transition metals including Fe and Cu are relatively well explored, examples of such a reaction at the redox-inactive zinc(II) site are limited. The present report aims to gain insights into the reactivity of nitrite anions, nitrous acid (HONO), and organonitrite (RONO) at a dizinc(II) site. A phenolate-bridged dizinc(II)-aqua complex [LH ZnII (OH2 )]2 (ClO4 )2 (1H -Aq, where LH =tridentate N,N,O-donor monoanionic ligand) is illustrated to react with t BuONO to provide a metastable arene-nitrosonium charge-transfer complex 2H . UV-vis, FTIR, multinuclear NMR, and elemental analyses suggests the presence of a 2 : 1 arene-nitrosonium moiety. Furthermore, the reactivity of a structurally characterized zinc(II)-nitrite complex [LH ZnII (ONO)]2 (1H -ONO) with a proton-source demonstrates HONO reactivity at the dizinc(II) site. Reactivity of both RONO (R=alkyl/H) at the phenolate-bridged dizinc(II) site provides NO+ charge-transfer complex 2H . Subsequently, the reactions of 2H with exogenous reductants (such as ferrocene, thiol, phenol, and catechol) have been illustrated to generate NO. In addition, NO yielding reactivity of [LH ZnII (ONO)]2 (1H -ONO) in the presence of the above-mentioned reductants have been compared with the reactions of complex 2H . Thus, this report sheds light on the transformations of NO2 - /RONO (R=alkyl/H) to NO/NO+ at the redox-inactive zinc(II) coordination motif.

6.
Chemistry ; 29(2): e202202897, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36196020

RESUMO

Stoichiometric reaction of phosphine-borane adducts RR'PH⋅BH3 (R=Ph, R'=H, Ph, Et, and R=R'=t Bu) with the strong acid HNTf2 (Tf=SO2 CF3 ) leads to H2 elimination and the formation of the triflimido derivatives, RR'PH⋅BH2 (NTf2 ). Subsequent deprotonation by using bases, such as diisopropylethylamine or the carbene IPr (IPr=N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), led to the formation of P-mono- or -disubstituted polyphosphinoboranes [RR'P-BH2 ]n . Evidence for the intermediacy of transient phosphinoborane monomers, RR'PBH2 , was provided by trapping reactions.

7.
Inorg Chem ; 62(6): 2726-2737, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36715550

RESUMO

Exploiting an affordable, durable, and high-performance electrocatalyst for the oxygen evolution reaction (OER) under lower pH condition (acidic) is highly challengeable and much attractive toward the hydrogen-based energy technologies. A spinel CoCr2O4 is observed as a potential noble-metal-free candidate for OER in alkaline medium. The presence of Cr further leads to electronic structure modulation of Co3O4 and thereby greatly increases the corrosive resistance toward OER in acidic environment. Herein, a typical CoCr2O4 with three different morphologies was synthesized for the very first time and employed as an electrocatalyst for OER in alkaline (1 M KOH) and acidic (0.5 M H2SO4) medium. Moreover, different morphologies display a different intrinsic exposed active site and thereby display different electrocatalytic activities. Likewise, the CoCr2O4 Mic (synthesized by the microwave heating method) displays a higher catalytic activity toward OER and delivers a low overpotential of 293 and 290 mV to attain 10 mA/cm2 current density and smaller Tafel slope values of 40 and 151 mV/dec, respectively, in alkaline and acidic environment than the synthesized CoCr2O4 Wet (wet-chemically synthesized) and CoCr2O4 Hyd (hydrothermally synthesized). Moreover, CoCr2O4 Mic exhibits a long-term durability of 24 h (1 M KOH) and 10.5 h (0.5 M H2SO4). The optimized Co-O bond energy in OER condition makes the CoCr2O4 Mic superior than the CoCr2O4 Hyd and CoCr2O4 Wet. Moreover, the substitution of Cr induces the electron delocalization around the Co active species and thereby, positive shifting of the redox potential leads to providing an optimal binding energy for OER intermediates. Also, interestingly, this work represents a catalytic activity trend by a simple experimental result without any complex theoretical calculation. The morphology-dependent electrocatalytic activity obtained in this work will provide a new strategy in the field of electrochemical conversion and energy storage application.

8.
Inorg Chem ; 62(35): 14448-14458, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37610340

RESUMO

Electrocatalytic water splitting has emerged as a promising approach for clean and sustainable hydrogen production. The LaFeO3 perovskite structure exhibits intriguing properties such as mixed ionic-electronic conductivity, high stability, and abundant active sites for electrocatalysis. However, its OER and HER activities are limited by the sluggish kinetics of these reactions. To overcome this limitation, Au nanoparticles (NPs) are decorated onto the surface of LaFeO3 through a facile synthesis method. The Au NPs on the LaFeO3 surface provide additional active sites for water splitting reactions, promoting the adsorption and activation of water molecules. The presence of Au enhances the charge transfer kinetics via the heterostructure between Au NPs and LaFeO3 and facilitates electron transport during the OER and HER process. The catalyst requires only 318 and 199 mV as overpotential to attain a 50 mA cm-2 current density in 1 M KOH solution. Our results demonstrate that the Au@LaFeO3 catalyst exhibits significantly improved electrocatalytic activity compared to pure LaFeO3 and other catalysts reported in the literature. The enhanced performance is attributed due to the synergistic effects between Au NPs and LaFeO3, including an increased surface area, improved conductivity, and optimized surface energetics. Overall, the Au-decorated LaFeO3 catalyst presents a promising candidate for efficient electrocatalytic water splitting, providing a pathway for sustainable hydrogen production. The insights gained from this study contribute to the development of advanced catalysts for renewable energy technologies and pave the way for future research in the field of electrochemical water splitting.

9.
Inorg Chem ; 62(19): 7195-7202, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37132510

RESUMO

NU-1000, being a hydrothermally stable metal-organic framework (MOF), with structural robustness is viable for functionalization with various entities. A postsynthetic modification strategy called solvent-assisted ligand incorporation (SALI) is chosen for functionalizing NU-1000 with thiol moieties using 2-mercaptobenzoic acid. In accordance with soft acid-soft base interactions, the thiol groups on NU-1000, as a scaffold, can immobilize the gold nanoparticles without much aggregation. The catalytically active gold sites on thiolated NU-1000 are utilized for hydrogen evolution reaction (HER). The catalyst delivered an overpotential of 101 mV at a current density of 10 mAcm-2 in 0.5 M H2SO4. The faster charge transfer kinetics determined from the Tafel slope of 44 mV/dec enhances the HER activity. The sustainable performance of the catalyst for 36 h proves its utility as a potential catalyst to produce neat hydrogen.

10.
Inorg Chem ; 62(51): 21265-21276, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38073275

RESUMO

Electrocatalytic water splitting to an anodic oxygen evolution reaction (OER) and a cathodic hydrogen evolution reaction (HER) is believed to be the most important application for sustainable hydrogen generation. Being a four-electron, four-proton transfer process, the OER plays the main obstacle for the same. Therefore, designing an effective electrocatalyst to minimize the activation energy barrier for the OER is a research topic of prime importance. The metal-organic framework (MOF) with a highly porous network is considered an appropriate candidate for the OER in alkaline conditions. Apart from several MOFs, the bimetallic one has an advantageous electrocatalytic performance due to the synergistic electronic interaction between two metal ions. However, most bimetallic MOFs have an obstacle to electrocatalytic application due to their low conductive nature, and therefore, they possess a barrier for charge transfer kinetics at the interface. Surface functionalization via various nanoparticles (NPs) is believed to be the most effective strategy for nullifying the conductive issue. In this work, we have designed a CoNi-based bimetallic MOF that was surface-functionalized by Au NPs (Au@CoNi-Bpy-BTC) for the OER under alkaline conditions. Au@CoNi-Bpy-BTC required an overpotential of just 330 mV, which is 56 mV lower as compared to the pristine MOF. Impedance analysis confirms an improved conductivity and charge transfer at the interface, where Au@CoNi-Bpy-BTC possesses a lower Rct value than CoNi-Bpy-BTC materials. Moreover, the Au-decorated MOF shows an 8.5 times increase in the TOF value compared to the pristine MOF. Therefore, this noble strategy toward the surface functionalization of MOFs via noble metal NPs is believed to be the most effective strategy for developing effective electrocatalysts for electrocatalytic application in energy-related fields. Overall, this report displays an exceptional correlation between the decorated NPs over the MOF surface, which can regulate the OER activity, as confirmed by experimental analysis.

11.
Inorg Chem ; 62(30): 11817-11828, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37437220

RESUMO

Water electrolysis is considered as one of the alternative potential approaches for producing renewable energy. Due to the sluggish kinetic nature of oxygen evolution reaction (OER), it encounters a significant overpotential to achieve water electrolysis. Hence, the advancement of cost-effective transition metal-based catalysts toward water splitting has gained global attention in recent years. In this work, the doping of Fe over amorphous NiWO4 increased the OER activity effectively and achieved stable oxygen evolution in the alkaline medium, which show better electrocatalytic activity as compared to crystalline tungstate. As NiWO4 has poor activity toward OER in the alkaline medium, the doping of Fe3+ will tune the electronic structure of Ni in NiWO4 and boost the OER activity. The as-synthesized Fe-doped amorphous NiWO4 exhibits a low overpotential of 230 mV to achieve a current density of 10 mA cm-2 and a lower Tafel slope value of 48 mV dec-1 toward OER in 1.0 M KOH solution. The catalyst also exhibits long-term static stability of 30 h during chronoamperometric study. The doping of Fe improves the electronic conductivity of Ni-3d states in NiWO4 which play a dominant role for better catalytic activity via synergistic interaction between Fe and active Ni sites. In future, these results offer an alternative route for precious metal-free catalysts in alkaline medium and can be explicitly used in various tungstate-based materials to increase the synergism between the doped atom and metal ions in tungstate-based materials for further improvement in the electrocatalytic performance.

12.
Inorg Chem ; 62(16): 6411-6420, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37036319

RESUMO

Developing cost-efficient and noble metal free electrocatalysts is vastly anticipated for the oxygen evolution reaction (OER). Therefore, in this study, to lift the thermodynamic and kinetic activity of the OER, we attempted to synthesize a bimetallic nickel and manganese-based zeolite imidazolate framework system in a fiber form. For this synthesis, a bottom-up approach has been followed through wet chemical analysis, and electrospinning was utilized for fiber formation. The resultant fiber has shown a lesser overpotential of 256 mV at a benchmarking current density of 10 mA cm-2 under 1 M KOH conditions. As expected, the attained Tafel slope and charge transfer resistance values are lesser. The observed results reveal that the synergism between the Ni and Mn nodes on the imidazolate framework successfully promotes the thermodynamic formation of *O and *OOH intermediates, which significantly helps to improve the faster OER kinetics at the electrode-electrolyte interface.

13.
Angew Chem Int Ed Engl ; 62(48): e202311523, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37800603

RESUMO

Nitrite (NO2 - ) and nitric oxide (NO) interconversion is crucial for maintaining optimum NO flux in mammalian physiology. Herein we demonstrate that [L2 CuII (nitrite)]+ moieties (in 2 a and 2 b; where, L = Me2 PzPy and Me2 PzQu) with distorted octahedral geometry undergo facile reduction to provide tetrahedral [L2 CuI ]+ (in 3 a and 3 b) and NO in the presence of biologically relevant reductants, such as 4-methoxy-2,6-di-tert-butylphenol (4-MeO-2,6-DTBP, a tyrosine model) and N-benzyl-1,4-dihydronicotinamide (BNAH, a NAD(P)H model). Interestingly, the reaction of excess NO gas with [L2 CuII (MeCN)2 ]2+ (in 1 a) provides a putative {CuNO}10 species, which is effective in mediating the nitrosation of various nucleophiles, such as thiol and amine. Generation of the transient {CuNO}10 species in wet acetonitrile leads to NO2 - as assessed by Griess assay and 14 N/15 N-FTIR analyses. A detailed study reveals that the bidirectional NOx -reactivity, namely, nitrite reductase (NIR) and NO oxidase (NOO), at a common CuII site, is governed by the geometric-preference-driven facile CuII /CuI redox process. Of broader interest, this study not only highlights potential strategies for the design of copper-based catalysts for nitrite reduction, but also strengthens the previous postulates regarding the involvement of red copper proteins in denitrification.

14.
Angew Chem Int Ed Engl ; 62(50): e202313187, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37856704

RESUMO

(Per)thionitrite (SNO- /SSNO- ) intermediates play vital roles in modulating nitric oxide (NO) and hydrogen sulfide (H2 S) dependent bio-signalling processes. Whilst the previous preparations of such intermediates involved reactive H2 S/HS- or sulfane sulfur (S0 ) species, the present report reveals that relatively stable thiocarbonyl compounds (such as carbon disulfide (CS2 ), thiocarbamate, thioacetic acid, and thioacetate) react with nitrite anion to yield SNO- /SSNO- . For instance, the reaction of CS2 and nitrite anion (NO2 - ) under ambient condition affords CO2 and SNO- /SSNO- . A detailed investigation involving UV/Vis, FTIR, HRMS, and multinuclear NMR studies confirm the formation of SNO- /SSNO- , which are proposed to form through an initial nucleophilic attack by nitrite anion followed by a transnitrosation step. Notably, reactions of CS2 and nitrite in the presence of thiol RSH show the formation of organic polysulfides R-Sn -R, thereby illustrating that the thiocarbonyls are capable of influencing the pool of bioavailable sulfane sulfurs. Furthermore, the availability of both NO2 - and thiocarbonyl motifs in the biological context hints at their synergistic metal-free activations leading to the generation of NO gas and various reactive sulfur species via SNO- /SSNO- .

15.
J Am Chem Soc ; 144(33): 15093-15099, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35948086

RESUMO

Copper nitrite reductases (CuNIRs) convert NO2- to NO as well as NO to N2O under high NO flux at a mononuclear type 2 Cu center. While model complexes illustrate N-N coupling from NO that results in symmetric trans-hyponitrite [CuII]-ONNO-[CuII] complexes, we report NO assembly at a single Cu site in the presence of an external reductant Cp*2M (M = Co, Fe) to give the first copper cis-hyponitrites [Cp*2M]{[CuII](κ2-O2N2)[CuI]}. Importantly, the κ1-N-bound [CuI] fragment may be easily removed by the addition of mild Lewis bases such as CNAr or pyridine to form the spectroscopically similar anion {[CuII](κ2-O2N2)}-. The addition of electrophiles such as H+ to these anionic copper(II) cis-hyponitrites leads to N2O generation with the formation of the dicopper(II)-bis-µ-hydroxide [CuII]2(µ-OH)2. One-electron oxidation of the {[CuII](κ2-O2N2)}- core turns on H-atom transfer reactivity, enabling the oxidation of 9,10-dihydroanthracene to anthracene with concomitant formation of N2O and [CuII]2(µ-OH)2. These studies illustrate both the reductive coupling of NO at a single copper center and a way to harness the strong oxidizing power of nitric oxide via the neutral cis-hyponitrite [Cu](κ2-O2N2).


Assuntos
Cobre , Óxido Nítrico , Nitritos , Oxirredução
16.
J Am Chem Soc ; 144(46): 21136-21145, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36351171

RESUMO

Molecular catalysts for ammonia oxidation to dinitrogen represent enabling components to utilize ammonia as a fuel and/or source of hydrogen. Ammonia oxidation requires not only the breaking of multiple strong N-H bonds but also controlled N-N bond formation. We report a novel ß-diketiminato copper complex [iPr2NNF6]CuI-NH3 ([CuI]-NH3 (2)) as a robust electrocatalyst for NH3 oxidation in acetonitrile under homogeneous conditions. Complex 2 operates at a moderate overpotential (η = 700 mV) with a TOFmax = 940 h-1 as determined from CV data in 1.3 M NH3-MeCN solvent. Prolonged (>5 h) controlled potential electrolysis (CPE) reveals the stability and robustness of the catalyst under electrocatalytic conditions. Detailed mechanistic investigations indicate that electrochemical oxidation of [CuI]-NH3 forms {[CuII]-NH3}+ (4), which undergoes deprotonation by excess NH3 to form reactive copper(II)-amide ([CuII]-NH2, 6) unstable toward N-N bond formation to give the dinuclear hydrazine complex [CuI]2(µ-N2H4). Electrochemical studies reveal that the diammine complex [CuI](NH3)2 (7) forms at high ammonia concentration as part of the {[CuII](NH3)2}+/[CuI](NH3)2 redox couple that is electrocatalytically inactive. DFT analysis reveals a much higher thermodynamic barrier for deprotonation of the four-coordinate {[CuII](NH3)2}+ (8) by NH3 to give the copper(II) amide [CuII](NH2)(NH3) (9) (ΔG = 31.7 kcal/mol) as compared to deprotonation of the three-coordinate {[CuII]-NH3}+ by NH3 to provide the reactive three-coordinate parent amide [CuII]-NH2 (ΔG = 18.1 kcal/mol) susceptible to N-N coupling to form [CuI]2(µ-N2H4) (ΔG = -11.8 kcal/mol).


Assuntos
Amônia , Cobre , Cobre/química , Amônia/química , Catálise , Termodinâmica , Amidas
17.
Chemistry ; 28(37): e202200776, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35470499

RESUMO

Transformations of sulfane sulfur compounds (e. g. organic polysulfides (R-Sn -R, n>2) and elemental sulfur (S8 )) play pivotal roles in the biochemical landscape of sulfur, and thus supports signaling activities of H2 S. Although a number of previous reports illustrate amine mediated reactions of S8 and thiol (RSH) yielding R-Sn -R, this report illustrates that a tripodal [ZnII ] complex [(Bn3 Tren)ZnII -OH2 ](ClO4 )2 (1) facilitates the reactions of sulfane sulfur and thiol (RSH), thereby offering an amine-free biologically relevant complementary route. UV-vis monitoring of the reactions and a set of control experiments underline the definitive role of [ZnII ] coordination motif in the reactions of sulfane sulfur (e. g. S8 and R-Sn -R) with RSH. Detailed investigations (UV-vis, NMR, ESI-MS, intermediate trapping, and TEMPO radical interference experiments) disclose the key differences in the [ZnII ] versus previously known amine mediated routes. Moreover, the persulfide (RSS- ) trapping experiments using 1-fluoro-2,4-dinitrobenzene (F-DNB) reveal the intermediacy of RSS- species in the [ZnII ] mediated reactions of sulfane sulfur and thiol, thereby demonstrating [ZnII ] assisted persulfidation of thiol in the presence of sulfane sulfur species. Of broader impact, this study underscores the feasible influence of biologically relevant [ZnII ] coordination motifs (e. g. carbonic anhydrase) on the sulfane sulfur chemistry in biology.


Assuntos
Compostos de Sulfidrila , Zinco , Enxofre/química , Compostos de Enxofre
18.
Chemistry ; 28(31): e202200913, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35357049

RESUMO

Herein, the synthesis and characterization of the carbene-stabilized boryl phosphinidenes 1-3 are reported. Compounds 1-3 are obtained by reacting Me-cAAC=PK (Me2 -cAAC=dimethyl cyclic(alkyl)(amino)carbene) and dihaloaryl borane in toluene. All three compounds were characterized by X-ray crystallography. Quantum mechanical studies indicated that these compounds have two lone pairs on the P center viz., an σ-type lone pair and a "hidden" π-type lone pair. Hence, these compounds can act as double Lewis bases, and the basicity of the π-type lone pair is higher than the σ-type lone pair.

19.
Inorg Chem ; 61(22): 8477-8483, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35612531

RESUMO

The one-electron reduction of nitrite (NO2-) to nitric oxide (NO) and ene-diol oxidation are two important biochemical transformations. Employing mononuclear cobalt-nitrite complexes with CoIII and CoII oxidation states, [(Bz3Tren)CoIII(nitrite)2](ClO4) (1) and [(Bz3Tren)CoII(nitrite)](ClO4) (2), this report illustrates NO release coupled to stepwise oxidation of ene-diol antioxidants such as l-ascorbic acid (AH2) and catechol. Analysis of the AH2 end-product reveals that the reaction with complex 1 affords dehydroascorbic acid. Intriguingly, a controlled oxidation of AH2 with complex 2 results in a [CoII]-bound ascorbyl radical-anion (8). Finally, NO release with the concomitant generation of metal-bound 3,5-di-tert-butyl-semiquinone radical anion from the reactions of 3,5-di-tert-butyl-catechol and [(Bz3Tren)MII(nitrite)](ClO4) (2, M = Co; 4, M = Zn) provides mechanistic insights into the cross-talk between nitrite and ene-diols at the metal sites.


Assuntos
Óxido Nítrico , Nitritos , Antioxidantes , Catecóis , Cobalto/química , Óxido Nítrico/química , Nitritos/química , Oxirredução
20.
Inorg Chem ; 61(42): 16895-16904, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36221930

RESUMO

To generate green hydrogen by water electrolysis, it is vital to develop highly efficient electrocatalysts for the oxygen evolution reaction (OER). The utilization of various 3d transition metal-based layered double hydroxides (LDHs), especially NiFe-LDH, has gained vast attention for OER under alkaline conditions. However, the lack of a proper electronic structure of the NiFe-LDH and low stability under high-pH conditions limit its large-scale application. To overcome these difficulties, in this study, we constructed an Sn-doped NiFe-LDH material using a simple wet-chemical method. The doping of Sn will synergistically increase the active surface sites of NiFe-LDH. The highly active NiFe-LDH Sn0.015(M) shows excellent OER activity by requiring an overpotential of 250 mV to drive 10 mA/cm2 current density, whereas the bare NiFe-LDH required an overpotential of 295 mV at the same current density. Also, NiFe-LDH Sn0.015(M) shows excellent long-term stability for 50 h in 1 M KOH and also exhibits a higher TOF value of 0.495 s-1, which is almost five times higher than that of bare NiFe-LDH. This study highlights Sn doping as an effective strategy for the development of low-cost, effective, stable, self-supported electrocatalysts with a high current density for improved OER and other catalytic applications in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA