Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Ecol Lett ; 27(1): e14362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38253060

RESUMO

Insects are key components of food chains, and monitoring data provides new opportunities to identify trophic relationships at broad spatial and temporal scales. Here, combining two monitoring datasets from Great Britain, we reveal how the population dynamics of the blue tit Cyanistes caeruleus are influenced by the abundance of moths - a core component of their breeding diet. We find that years with increased population growth for blue tits correlate strongly with high moth abundance, but population growth in moths and birds is less well correlated; suggesting moth abundance directly affects bird population change. Next, we identify moths that are important components of blue tit diet, recovering associations to species previously identified as key food sources such as the winter moth Operoptera brumata. Our work provides new evidence that insect abundance impacts bird population dynamics in natural communities and provides insight into spatial diet turnover at a national-scale.


Assuntos
Mariposas , Aves Canoras , Animais , Insetos , Cadeia Alimentar , Estações do Ano
2.
Glob Chang Biol ; 28(12): 3754-3777, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35098624

RESUMO

Biodiversity conservation faces a methodological conundrum: Biodiversity measurement often relies on species, most of which are rare at various scales, especially prone to extinction under global change, but also the most challenging to sample and model. Predicting the distribution change of rare species using conventional species distribution models is challenging because rare species are hardly captured by most survey systems. When enough data are available, predictions are usually spatially biased towards locations where the species is most likely to occur, violating the assumptions of many modelling frameworks. Workflows to predict and eventually map rare species distributions imply important trade-offs between data quantity, quality, representativeness and model complexity that need to be considered prior to survey and analysis. Our opinion is that study designs need to carefully integrate the different steps, from species sampling to modelling, in accordance with the different types of rarity and available data in order to improve our capacity for sound assessment and prediction of rare species distribution. In this article, we summarize and comment on how different categories of species rarity lead to different types of occurrence and distribution data depending on choices made during the survey process, namely the spatial distribution of samples (where to sample) and the sampling protocol in each selected location (how to sample). We then clarify which species distribution models are suitable depending on the different types of distribution data (how to model). Among others, for most rarity forms, we highlight the insights from systematic species-targeted sampling coupled with hierarchical models that allow correcting for overdispersion and spatial and sampling sources of bias. Our article provides scientists and practitioners with a much-needed guide through the ever-increasing diversity of methodological developments to improve the prediction of rare species distribution depending on rarity type and available data.


Assuntos
Biodiversidade
3.
Nature ; 530(7588): 85-8, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842058

RESUMO

There is considerable concern over declines in insect pollinator communities and potential impacts on the pollination of crops and wildflowers. Among the multiple pressures facing pollinators, decreasing floral resources due to habitat loss and degradation has been suggested as a key contributing factor. However, a lack of quantitative data has hampered testing for historical changes in floral resources. Here we show that overall floral rewards can be estimated at a national scale by combining vegetation surveys and direct nectar measurements. We find evidence for substantial losses in nectar resources in England and Wales between the 1930s and 1970s; however, total nectar provision in Great Britain as a whole had stabilized by 1978, and increased from 1998 to 2007. These findings concur with trends in pollinator diversity, which declined in the mid-twentieth century but stabilized more recently. The diversity of nectar sources declined from 1978 to 1990 and thereafter in some habitats, with four plant species accounting for over 50% of national nectar provision in 2007. Calcareous grassland, broadleaved woodland and neutral grassland are the habitats that produce the greatest amount of nectar per unit area from the most diverse sources, whereas arable land is the poorest with respect to amount of nectar per unit area and diversity of nectar sources. Although agri-environment schemes add resources to arable landscapes, their national contribution is low. Owing to their large area, improved grasslands could add substantially to national nectar provision if they were managed to increase floral resource provision. This national-scale assessment of floral resource provision affords new insights into the links between plant and pollinator declines, and offers considerable opportunities for conservation.


Assuntos
Biodiversidade , Flores/química , Flores/crescimento & desenvolvimento , Néctar de Plantas/análise , Plantas/química , Plantas/classificação , Animais , Flores/classificação , Pradaria , Insetos/fisiologia , Medicago/química , Medicago/crescimento & desenvolvimento , Plantas/metabolismo , Polinização , Especificidade da Espécie , Reino Unido
4.
Nature ; 574(7780): 641-642, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31666718
5.
BMC Plant Biol ; 18(1): 277, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419829

RESUMO

BACKGROUND: Temperature is one of the most important abiotic factors limiting plant growth and productivity. Many plants exhibit cold acclimation to prepare for the likelihood of freezing as temperatures decrease towards 0 °C. The physiological mechanisms associated with enabling increased tolerance to sub-zero temperatures vary between species and genotypes. Geographically and climatically diverse populations of Arabidopsis lyrata ssp. petraea were examined for their ability to survive, maintain functional photosynthetic parameters and cellular electrolyte leakage integrity after being exposed to sub-zero temperatures. The duration of cold acclimation prior to sub-zero temperatures was also manipulated (2 and 14 days). RESULTS: We found that there was significant natural variation in tolerances to sub-zero temperatures among populations of A. petraea. The origin of the population affected the acclimation response and survival after exposure to sub-zero temperatures. Cold acclimation of plants prior to sub-zero temperatures affected the maximum quantum efficiency of photosystem II (PSII) (Fv/Fm) in that plants that were cold acclimated for longer periods had higher values of Fv/Fm as a result of sub-zero temperatures. The inner immature leaves were better able to recover Fv/Fm from sub-zero temperatures than mature outer leaves. The Irish population (Leitrim) acclimated faster, in terms of survival and electrolyte leakage than the Norwegian population (Helin). CONCLUSION: The ability to survive, recover photosynthetic processes and cellular electrolyte leakage after exposure to sub-zero temperatures is highly dependent on the duration of cold acclimation.


Assuntos
Aclimatação , Arabidopsis/fisiologia , Clorofila/metabolismo , Fluorescência , Congelamento , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia
6.
Glob Chang Biol ; 23(8): 3040-3051, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27992955

RESUMO

Land-use change is one of the primary drivers of species loss, yet little is known about its effect on other components of biodiversity that may be at risk. Here, we ask whether, and to what extent, landscape simplification, measured as the percentage of arable land in the landscape, disrupts the functional and phylogenetic association between primary producers and consumers. Across seven European regions, we inferred the potential associations (functional and phylogenetic) between host plants and butterflies in 561 seminatural grasslands. Local plant diversity showed a strong bottom-up effect on butterfly diversity in the most complex landscapes, but this effect disappeared in simple landscapes. The functional associations between plant and butterflies are, therefore, the results of processes that act not only locally but are also dependent on the surrounding landscape context. Similarly, landscape simplification reduced the phylogenetic congruence among host plants and butterflies indicating that closely related butterflies become more generalist in the resources used. These processes occurred without any detectable change in species richness of plants or butterflies along the gradient of arable land. The structural properties of ecosystems are experiencing substantial erosion, with potentially pervasive effects on ecosystem functions and future evolutionary trajectories. Loss of interacting species might trigger cascading extinction events and reduce the stability of trophic interactions, as well as influence the longer term resilience of ecosystem functions. This underscores a growing realization that species richness is a crude and insensitive metric and that both functional and phylogenetic associations, measured across multiple trophic levels, are likely to provide additional and deeper insights into the resilience of ecosystems and the functions they provide.


Assuntos
Biodiversidade , Borboletas , Filogenia , Animais , Ecossistema , Europa (Continente)
7.
J Theor Biol ; 409: 155-164, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27565247

RESUMO

Environmental stochasticity is known to be a destabilizing factor, increasing abundance fluctuations and extinction rates of populations. However, the stability of a community may benefit from the differential response of species to environmental variations due to the storage effect. This paper provides a systematic and comprehensive discussion of these two contradicting tendencies, using the metacommunity version of the recently proposed time-average neutral model of biodiversity which incorporates environmental stochasticity and demographic noise and allows for extinction and speciation. We show that the incorporation of demographic noise into the model is essential to its applicability, yielding realistic behavior of the system when fitness variations are relatively weak. The dependence of species richness on the strength of environmental stochasticity changes sign when the correlation time of the environmental variations increases. This transition marks the point at which the storage effect no longer succeeds in stabilizing the community.


Assuntos
Biodiversidade , Modelos Biológicos
8.
Genome ; 59(12): 1101-1116, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27824505

RESUMO

Pollen beetles (Nitidulidae: Meligethinae) are among the most abundant flower-visiting insects in Europe. While some species damage millions of hectares of crops annually, the biology of many species is little known. We assessed the utility of a 797 base pair fragment of the cytochrome oxidase 1 gene to resolve molecular operational taxonomic units (MOTUs) in 750 adult pollen beetles sampled from flowers of 63 plant species sampled across the UK and continental Europe. We used the same locus to analyse region-scale patterns in population structure and demography in an economically important pest, Brassicogethes aeneus. We identified 44 Meligethinae at ∼2% divergence, 35 of which contained published sequences. A few specimens could not be identified because the MOTUs containing them included published sequences for multiple Linnaean species, suggesting either retention of ancestral haplotype polymorphism or identification errors in published sequences. Over 90% of UK specimens were identifiable as B. aeneus. Plant associations of adult B. aeneus were found to be far wider taxonomically than for their larvae. UK B. aeneus populations showed contrasting affiliations between the north (most similar to Scandinavia and the Baltic) and south (most similar to western continental Europe), with strong signatures of population growth in the south.


Assuntos
Brassica napus/parasitologia , Besouros/classificação , Besouros/genética , Código de Barras de DNA Taxonômico , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Genética Populacional , Haplótipos , Filogenia , Seleção Genética , Análise de Sequência de DNA
9.
Proc Biol Sci ; 282(1806): 20150294, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25833861

RESUMO

Change in land cover is thought to be one of the key drivers of pollinator declines, and yet there is a dearth of studies exploring the relationships between historical changes in land cover and shifts in pollinator communities. Here, we explore, for the first time, land cover changes in England over more than 80 years, and relate them to concurrent shifts in bee and wasp species richness and community composition. Using historical data from 14 sites across four counties, we quantify the key land cover changes within and around these sites and estimate the changes in richness and composition of pollinators. Land cover changes within sites, as well as changes within a 1 km radius outside the sites, have significant effects on richness and composition of bee and wasp species, with changes in edge habitats between major land classes also having a key influence. Our results highlight not just the land cover changes that may be detrimental to pollinator communities, but also provide an insight into how increases in habitat diversity may benefit species diversity, and could thus help inform policy and practice for future land management.


Assuntos
Abelhas/fisiologia , Biodiversidade , Ecossistema , Vespas/fisiologia , Animais , Conservação dos Recursos Naturais , Inglaterra , Polinização , Fatores de Tempo
10.
Proc Biol Sci ; 282(1803): 20142849, 2015 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25673686

RESUMO

Insect pollinators provide a crucial ecosystem service, but are under threat. Urban areas could be important for pollinators, though their value relative to other habitats is poorly known. We compared pollinator communities using quantified flower-visitation networks in 36 sites (each 1 km(2)) in three landscapes: urban, farmland and nature reserves. Overall, flower-visitor abundance and species richness did not differ significantly between the three landscape types. Bee abundance did not differ between landscapes, but bee species richness was higher in urban areas than farmland. Hoverfly abundance was higher in farmland and nature reserves than urban sites, but species richness did not differ significantly. While urban pollinator assemblages were more homogeneous across space than those in farmland or nature reserves, there was no significant difference in the numbers of rarer species between the three landscapes. Network-level specialization was higher in farmland than urban sites. Relative to other habitats, urban visitors foraged from a greater number of plant species (higher generality) but also visited a lower proportion of available plant species (higher specialization), both possibly driven by higher urban plant richness. Urban areas are growing, and improving their value for pollinators should be part of any national strategy to conserve and restore pollinators.


Assuntos
Biodiversidade , Ecossistema , Insetos/fisiologia , Polinização/fisiologia , Agricultura , Animais , Abelhas/fisiologia , Cidades , Dípteros/fisiologia , Magnoliopsida/fisiologia , Reino Unido
11.
J Anim Ecol ; 84(4): 1112-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25732937

RESUMO

In 2003, 24 presence-absence ß-diversity metrics were reviewed and a number of trade-offs and redundancies identified. We present a parallel investigation into the performance of abundance-based metrics of ß-diversity. ß-diversity is a multi-faceted concept, central to spatial ecology. There are multiple metrics available to quantify it: the choice of metric is an important decision. We test 16 conceptual properties and two sampling properties of a ß-diversity metric: metrics should be 1) independent of α-diversity and 2) cumulative along a gradient of species turnover. Similarity should be 3) probabilistic when assemblages are independently and identically distributed. Metrics should have 4) a minimum of zero and increase monotonically with the degree of 5) species turnover, 6) decoupling of species ranks and 7) evenness differences. However, complete species turnover should always generate greater values of ß than extreme 8) rank shifts or 9) evenness differences. Metrics should 10) have a fixed upper limit, 11) symmetry (ßA,B  = ßB,A ), 12) double-zero asymmetry for double absences and double presences and 13) not decrease in a series of nested assemblages. Additionally, metrics should be independent of 14) species replication 15) the units of abundance and 16) differences in total abundance between sampling units. When samples are used to infer ß-diversity, metrics should be 1) independent of sample sizes and 2) independent of unequal sample sizes. We test 29 metrics for these properties and five 'personality' properties. Thirteen metrics were outperformed or equalled across all conceptual and sampling properties. Differences in sensitivity to species' abundance lead to a performance trade-off between sample size bias and the ability to detect turnover among rare species. In general, abundance-based metrics are substantially less biased in the face of undersampling, although the presence-absence metric, ßsim , performed well overall. Only ßBaselga R turn , ßBaselga B-C turn and ßsim measured purely species turnover and were independent of nestedness. Among the other metrics, sensitivity to nestedness varied >4-fold. Our results indicate large amounts of redundancy among existing ß-diversity metrics, whilst the estimation of unseen shared and unshared species is lacking and should be addressed in the design of new abundance-based metrics.


Assuntos
Biodiversidade , Ecologia/métodos , Animais , Modelos Biológicos , Densidade Demográfica
12.
Ecol Lett ; 17(11): 1389-99, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25167890

RESUMO

Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks.


Assuntos
Flores/genética , Magnoliopsida/genética , Filogenia , Polinização , Animais , Abelhas , Dípteros , Modelos Biológicos , Néctar de Plantas/química
13.
14.
Ecol Lett ; 16(7): 870-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23692632

RESUMO

Concern about biodiversity loss has led to increased public investment in conservation. Whereas there is a widespread perception that such initiatives have been unsuccessful, there are few quantitative tests of this perception. Here, we evaluate whether rates of biodiversity change have altered in recent decades in three European countries (Great Britain, Netherlands and Belgium) for plants and flower visiting insects. We compared four 20-year periods, comparing periods of rapid land-use intensification and natural habitat loss (1930-1990) with a period of increased conservation investment (post-1990). We found that extensive species richness loss and biotic homogenisation occurred before 1990, whereas these negative trends became substantially less accentuated during recent decades, being partially reversed for certain taxa (e.g. bees in Great Britain and Netherlands). These results highlight the potential to maintain or even restore current species assemblages (which despite past extinctions are still of great conservation value), at least in regions where large-scale land-use intensification and natural habitat loss has ceased.


Assuntos
Biodiversidade , Insetos/classificação , Plantas , Polinização , Animais , Conservação dos Recursos Naturais , Europa (Continente) , Insetos/fisiologia
15.
New Phytol ; 197(3): 989-1001, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23278159

RESUMO

Widely distributed species, such as the perennial plant Arabidopsis lyrata, face a range of environmental conditions across space, creating selective pressures for local evolutionary adaptation. The species' fragmented distribution may reduce gene flow, which could either reduce or increase adaptive potential. The substantial variation in phenotypic traits observed across this species' northwestern European range may reflect a combination of plastic responses to environmental conditions, evolutionary adaptation and nonadaptive genetic differentiation. We conducted multi-site common garden experiments to study differences in plant performance in core and marginal areas. Plants from eight source populations representing the species' full geographic and altitudinal range in northwestern Europe were planted out in Iceland, Sweden, Scotland and Wales. We found evidence of both strong plastic responses and apparently adaptive differentiation in performance. Most evidence for local adaptation was found at range margins, with the strongest effects on reproductive output. Both biotic and abiotic factors affected performance, especially at range margins. Performance of most plants was best in the Scottish and Swedish common garden sites, in the core of the species' distribution. Despite adaptations at range margins, the performance of the species declines at distributional limits, with extreme southern populations looking particularly vulnerable.


Assuntos
Adaptação Fisiológica , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Meio Ambiente , Geografia , Islândia , Dinâmica Populacional , Análise de Componente Principal , Escócia , Suécia , País de Gales
16.
Ecol Appl ; 22(3): 1004-14, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22645828

RESUMO

The measurement and prediction of species' populations at different spatial scales is crucial to spatial ecology as well as conservation biology. An efficient yet challenging goal to achieve such population estimates consists of recording empirical species' presence and absence at a specific regional scale and then trying to predict occupancies at finer scales. So far the majority of the methods have been based on particular species' distributional features deemed to be crucial for downscaling occupancy. However, only a minority of them have dealt explicitly with specific spatial features. Here we employ a wide class of spatial point processes, the shot noise Cox processes (SNCP), to model species occupancies at different spatial scales and show that species' spatial aggregation is crucial for predicting population estimates at fine scales starting from coarser ones. These models are formulated in continuous space and locate points regardless of the arbitrary resolution that one employs to study the spatial pattern. We compare the performances of nine models, calibrated at regional scales and demonstrate that a very simple class of SNCP, the Thomas process, is able to outperform other published models in predicting occupancies down to areas four orders of magnitude smaller than the ones employed for the parameterization. We conclude by explaining the ability of the approach to infer spatially explicit information from spatially implicit measures, the potential of the framework to combine niche and spatial models, and the possibility of reversing the method to allow upscaling.


Assuntos
Ecossistema , Monitoramento Ambiental , Modelos Biológicos , Simulação por Computador , Demografia
17.
Remote Sens Ecol Conserv ; 8(5): 698-716, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36588588

RESUMO

Contemporary analyses of insect population trends are based, for the most part, on a large body of heterogeneous and short-term datasets of diurnal species that are representative of limited spatial domains. This makes monitoring changes in insect biomass and biodiversity difficult. What is needed is a method for monitoring that provides a consistent, high-resolution picture of insect populations through time over large areas during day and night. Here, we explore the use of X-band weather surveillance radar (WSR) for the study of local insect populations using a high-quality, multi-week time series of nocturnal moth light trapping data. Specifically, we test the hypotheses that (i) unsupervised data-driven classification algorithms can differentiate meteorological and biological phenomena, (ii) the diversity of the classes of bioscatterers are quantitatively related to the diversity of insects as measured on the ground and (iii) insect abundance measured at ground level can be predicted quantitatively based on dual-polarization Doppler WSR variables. Adapting the quasi-vertical profile analysis method and data clustering techniques developed for the analysis of hydrometeors, we demonstrate that our bioscatterer classification algorithm successfully differentiates bioscatterers from hydrometeors over a large spatial scale and at high temporal resolutions. Furthermore, our results also show a clear relationship between biological and meteorological scatterers and a link between the abundance and diversity of radar-based bioscatterer clusters and that of nocturnal aerial insects. Thus, we demonstrate the potential utility of this approach for landscape scale monitoring of biodiversity.

18.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210172, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35491602

RESUMO

Research into pollinators in managed landscapes has recently combined approaches of pollination ecology and landscape ecology, because key stressors are likely to interact across wide areas. While laboratory and field experiments are valuable for furthering understanding, studies are required to investigate the interacting drivers of pollinator health and diversity across a broader range of landscapes and a wider array of taxa. Here, we use a network of 96 study landscapes in six topographically diverse regions of Britain, to test the combined importance of honeybee density, insecticide loadings, floral resource availability and habitat diversity to pollinator communities. We also explore the interactions between these drivers and the cover and proximity of semi-natural habitat. We found that among our four drivers, only honeybee density was positively related to wild pollinator abundance and diversity, and the positive association between abundance and floral resources depended on insecticide loadings and habitat diversity. By contrast, our exploratory models including habitat composition metrics revealed a complex suite of interactive effects. These results demonstrate that improving pollinator community composition and health is unlikely to be achieved with general resource enhancements only. Rather, local land-use context should be considered in fine-tuning pollinator management and conservation. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Assuntos
Agricultura , Inseticidas , Animais , Abelhas , Ecologia , Ecossistema , Polinização
19.
Am Nat ; 178(5): 602-11, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22030730

RESUMO

The species-area relationship (SAR) is considered to be one of a few generalities in ecology, yet a universal model of its shape and slope has remained elusive. Recently, Harte et al. argued that the slope of the SAR for a given area is driven by a single parameter, the ratio between total number of individuals and number of species (i.e., the mean population size across species at a given scale). We provide a geometric interpretation of this dependence. At the same time, however, we show that this dependence cannot be universal across taxa: if it holds for a taxon composed from two subsets of species and also for one of its subsets, it cannot simultaneously hold for the other subset. Using three data sets, we show that the slope of the SAR considerably varies around the prediction. We estimate the limits of this variation by using geometric considerations, providing a theory based on species spatial turnover at different scales. We argue that the SAR cannot be strictly universal, but its slope at each particular scale varies within the constraints given by species' spatial turnover at finer spatial scales, and this variation is biologically informative.


Assuntos
Biodiversidade , Aves , Peixes , Modelos Biológicos , Árvores , Animais , República Tcheca , Demografia , Ecossistema , Geografia , Mar Mediterrâneo , Panamá , Especificidade da Espécie
20.
Ecol Lett ; 13(11): 1358-67, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20825453

RESUMO

Organic farming aims to be wildlife-friendly, but it may not benefit wildlife overall if much greater areas are needed to produce a given quantity of food. We measured the density and species richness of butterflies on organic farms, conventional farms and grassland nature reserves in 16 landscapes. Organic farms supported a higher density of butterflies than conventional farms, but a lower density than reserves. Using our data, we predict the optimal land-use strategy to maintain yield whilst maximizing butterfly abundance under different scenarios. Farming conventionally and sparing land as nature reserves is better for butterflies when the organic yield per hectare falls below 87% of conventional yield. However, if the spared land is simply extra field margins, organic farming is optimal whenever organic yields are over 35% of conventional yields. The optimal balance of land sparing and wildlife-friendly farming to maintain production and biodiversity will differ between landscapes.


Assuntos
Borboletas , Conservação dos Recursos Naturais , Agricultura Orgânica , Animais , Biodiversidade , Ecossistema , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA