Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982652

RESUMO

The first application of aluminum foil (Al F) as a low-cost/high-availability substrate for sandwich immunoassay using surface-enhanced Raman spectroscopy (SERS) is reported. Untreated and unmodified Al F and gold film are used as substrates for sandwich SERS immunoassay to detect tuberculosis biomarker MPT64 and human immunoglobulin (hIgG) in less than 24 h. The limits of detection (LODs) for tuberculosis (TB) biomarker MPT64 on Al foil, obtained with commercial antibodies, are about 1.8-1.9 ng/mL, which is comparable to the best LOD (2.1 ng/mL) reported in the literature for sandwich ELISA, made with fresh in-house antibodies. Not only is Al foil competitive with traditional SERS substrate gold for the sandwich SERS immunoassay in terms of LOD, which is in the range 18-30 pM or less than 1 pmol of human IgG, but it also has a large cost/availability advantage over gold film. Moreover, human IgG assays on Al foil and Si showed better selectivity (by about 30-70% on Al foil and at least eightfold on Si) and a nonspecific response to rat or rabbit IgG, in comparison to the selectivity in assays using gold film.


Assuntos
Alumínio , Nanopartículas Metálicas , Coelhos , Ratos , Humanos , Animais , Análise Custo-Benefício , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Biomarcadores , Imunoensaio/métodos
2.
J Fluoresc ; 30(6): 1477-1482, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32857236

RESUMO

Surface enhanced fluorescence (SEF) is observed with very high contrast (100-200) from single E. coli bacteria cells labeled with Carbon nanodots (CDs), on aluminum foil and aluminum film. Likely, it is the first application of organic CDs in SEF. SEF with 633 nm excitation delivered a much higher contrast than SEF with 532 nm excitation. Contrast is the ratio of the fluorescent intensities of labeled CDs to unlabeled (control) cells. High contrast with CDs is also observed on the gold film, silicon, and glass. Enhancement factor (EF) is the ratio of the signal on the metal substrate to the signal on the glass. Single E. coli cells, labeled with commercial graphene quantum dots (GCDs), demonstrated higher EFs (44 on gold, 35 on Al film), but at least one order of magnitude lower contrast (7-10 on aluminum and gold) than cells labeled with organic CDs. Therefore, organic CDs can be a good choice for cell imaging/labeling, capable of achieving a signal to noise (standard deviation of the control) as high as 700 on Al film. Overall, aluminum foil and film are highlighted as inexpensive but efficient substrates for Metal Enhanced Fluorescence, particularly MEF of bacterial cells stained with CDs.


Assuntos
Alumínio/química , Alumínio/metabolismo , Carbono/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Fluorescência , Pontos Quânticos/química , Ouro/química , Razão Sinal-Ruído , Coloração e Rotulagem
3.
BMC Nephrol ; 21(1): 229, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539773

RESUMO

BACKGROUND: Proteinuria is a major marker of chronic kidney disease (CKD) progression and the predictor of cardiovascular mortality. The rapid development of renal failure is expected in those patients who have higher level of proteinuria however, some patients may have slow decline of renal function despite lower level of urinary protein excretion. The different mechanical (visco-elastic) and chemical properties, as well as the proteome profiles of urinary proteins might explain their tubular toxicity mechanism. Brillouin light scattering (BLS) and surface enhanced Raman scattering (SERS) spectroscopies are non-contact, laser optical-based techniques providing visco-elastic and chemical property information of probed human biofluids. We proposed to study and compare these properties of urinary proteins using BLS and SERS spectroscopies in nephrotic patient and validate hybrid BLS-SERS spectroscopy in diagnostic of urinary proteins as well as their profiling. The project ultimately aims for the development of an optical spectroscopic sensor for rapid, non-contact monitoring of urine samples from patients in clinical settings. METHODS: BLS and SERS spectroscopies will be used for non-contact assessment of urinary proteins in proteinuric patients and healthy subjects and will be cross-validated by Liquid Chromatography-Mass Spectrometry (LC-MS). Participants will be followed-up during the 1 year and all adverse events such as exacerbation of proteinuria, progression of CKD, complications of nephrotic syndrome, disease relapse rate and inefficacy of treatment regimen will be registered referencing incident dates. Associations between urinary protein profiles (obtained from BLS and SERS as well as LC-MS) and adverse outcomes will be evaluated to identify most unfavored protein profiles. DISCUSSION: This prospective study is focused on the development of non-contact hybrid BLS - SERS sensing tool and its clinical deployment for diagnosis and prognosis of proteinuria. We will identify the most important types of urine proteins based on their visco-elasticity, amino-acid profile and molecular weight responsible for the most severe cases of proteinuria and progressive renal function decline. We will aim for the developed hybrid BLS - SERS sensor, as a new diagnostic & prognostic tool, to be transferred to other biomedical applications. TRIAL REGISTRATION: The trial has been approved by ClinicalTrials.gov (Trial registration ID NCT04311684). The date of registration was March 17, 2020.


Assuntos
Biomarcadores/urina , Proteinúria/diagnóstico , Insuficiência Renal Crônica/urina , Análise Espectral/métodos , Adulto , Cromatografia Líquida , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Estudos Prospectivos , Projetos de Pesquisa , Análise Espectral/instrumentação , Análise Espectral Raman
4.
Nanoscale Adv ; 4(1): 268-280, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36132951

RESUMO

The impact of variation in the interparticle gaps in dimers and trimers of gold nanoparticles (AuNPs), modified with Raman reporter (2-MOTP), on surface-enhanced Raman scattering (SERS) intensity, relative to the SERS intensity of a single AuNP, is investigated in this paper. The dimers, trimers, and single particles are investigated on the surfaces of four substrates: gold (Au), aluminium (Al), silver (Ag) film, and silicon (Si) wafer. The interparticle distance between AuNPs was tuned by selecting mercaptocarboxylic acids of various carbon chain lengths when each acid forms a mixed SAM with 2-MOTP. The SERS signal quantification was accomplished by combining maps of SERS intensity from a Raman microscope, optical microscope images (×100), and maps/images from AFM or SEM. In total, we analysed 1224 SERS nanoantennas (533 dimers, 648 monomers, and 43 trimers). The average interparticle gaps were measured using TEM. We observed inverse exponential trends for the Raman intensity ratio and enhancement factor ratio versus gap distance on all substrates. Gold substrate, followed by silicon, showed the highest Raman intensity ratio (9) and dimer vs. monomer enhancement factor ratio (up to 4.5), in addition to the steepest inverse exponential curve. The results may help find a balance between SERS signal reproducibility and signal intensity that would be beneficial for future agglomerated NPs in SERS measurements. The developed method of 3 to 1 map combination by an increase in image transparency can be used to study structure-activity relationships on various substrates in situ, and it can be applied beyond SERS microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA