Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(4): 6327-6341, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823892

RESUMO

To improve the color conversion performance, we study the nanoscale-cavity effects on the emission efficiency of a colloidal quantum dot (QD) and the Förster resonance energy transfer (FRET) from quantum well (QW) into QD in a GaN porous structure (PS). For this study, we insert green-emitting QD (GQD) and red-emitting QD (RQD) into the fabricated PSs in a GaN template and a blue-emitting QW template, and investigate the behaviors of the photoluminescence (PL) decay times and the intensity ratios of blue, green, and red lights. In the PS samples fabricated on the GaN template, we observe the efficiency enhancements of QD emission and the FRET from GQD into RQD, when compared with the samples of surface QDs, which is attributed to the nanoscale-cavity effect. In the PS samples fabricated on the QW template, the FRET from QW into QD is also enhanced. The enhanced FRET and QD emission efficiencies in a PS result in an improved color conversion performance. Because of the anisotropic PS in the sample surface plane, the polarization dependencies of QD emission and FRET are observed.

2.
Opt Express ; 29(3): 4067-4081, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770994

RESUMO

Förster resonance energy transfer (FRET) from a green-emitting quantum dot (GQD) into a red-emitting quantum dot (RQD) is an important mechanism in a multiple-color conversion process, particularly under the surface plasmon (SP) coupling condition for enhancing color conversion efficiency. Here, the dependencies of FRET efficiency on the relative concentrations of GQD and RQD in their mixtures and their surface molecule coatings for controlling surface charges are studied. Also, the SP coupling effects induced by two kinds of Ag nanoparticles on the emission behaviors of GQD and RQD are demonstrated, particularly when FRET is involved in the coupling process. FRET efficiency is reduced under the SP coupling condition. SP coupling can enhance the color conversion efficiency of either GQD or RQD. The combination of SP coupling and FRET can be used for controlling the relative converted light intensities in a multiple-color conversion process.

3.
Nanotechnology ; 32(29)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33848997

RESUMO

Rhodamine 6G (R6G) molecules linked CdZnSeS/ZnS green-emitting quantum dots (QDs) are self-assembled onto Ag nanoparticles (NPs) for studying the surface plasmon (SP) coupling effect on the Förster resonance energy transfer (FRET) process from QD into R6G. SP coupling can enhance the emission efficiency of QD such that FRET has to compete with QD emission for transferring energy into R6G. It is found that FRET efficiency is reduced under the SP coupling condition. Although R6G emission efficiency can also be enhanced through SP coupling when it is directly linked onto Ag NP, the enhancement decreases when R6G is linked onto QD and then the QD-R6G complex is self-assembled onto Ag NP. In particular, R6G emission efficiency can be reduced through SP coupling when the number of R6G molecules linked onto a QD is high. A rate-equation model is built for resembling the measured photoluminescence decay profiles and providing us with more detailed explanations for the observed FRET and SP coupling behaviors.

4.
Nanotechnology ; 32(13): 135206, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33271517

RESUMO

By forming nanodisk (ND) structures on a blue-emitting InGaN/GaN quantum-well (QW) template, the QWs become close to the red-emitting quantum dots (QDs) and Ag nanoparticles (NPs) attached onto the sidewalls of the NDs such that Förster resonance energy transfer (FRET) and surface plasmon (SP) coupling can occur to enhance the efficiency of blue-to-red color conversion. With a larger ND height, more QWs are exposed to open air on the sidewall for more QD/Ag NP attachment through QD self-assembly and Ag NP drop casting such that the FRET and SP coupling effects, and hence the color conversion efficiency can be enhanced. A stronger FRET process leads to a longer QD photoluminescence (PL) decay time and a shorter QW PL decay time. It is shown that SP coupling can enhance the FRET efficiency.

5.
Nanotechnology ; 31(29): 295001, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32268310

RESUMO

The plasmonic Dicke effect means a cooperative emission mechanism of multiple light emitters when they are simultaneously coupled with the same surface plasmon (SP) mode of a metal nanostructure to achieve a higher collective emission efficiency. Here, we compare the enhancements of emission efficiency among a series of SP-coupled InGaN/GaN quantum-well (QW) structures of different QW period numbers to show an emission behavior consistent with the plasmonic Dicke effect. The relative enhancement of overall emission efficiency increases with QW period number until it reaches a critical value, beyond which the enhancement starts to decrease. This critical QW period number corresponds to the effective depth range of the plasmonic Dicke effect in a multiple-QW system. It also represents an optimized QW structure for maximizing the SP coupling effect. Internal quantum efficiency and time-resolved photoluminescence are measured for comparing the enhanced emission efficiencies of blue and green QW structures with different QW period numbers through SP coupling induced by surface Ag nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA