Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Immunity ; 51(2): 285-297.e5, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31272808

RESUMO

Interactions with the microbiota influence many aspects of immunity, including immune cell development, differentiation, and function. Here, we examined the impact of the microbiota on CD8+ T cell memory. Antigen-activated CD8+ T cells transferred into germ-free mice failed to transition into long-lived memory cells and had transcriptional impairments in core genes associated with oxidative metabolism. The microbiota-derived short-chain fatty acid (SCFA) butyrate promoted cellular metabolism, enhanced memory potential of activated CD8+ T cells, and SCFAs were required for optimal recall responses upon antigen re-encounter. Mechanistic experiments revealed that butyrate uncoupled the tricarboxylic acid cycle from glycolytic input in CD8+ T cells, which allowed preferential fueling of oxidative phosphorylation through sustained glutamine utilization and fatty acid catabolism. Our findings reveal a role for the microbiota in promoting CD8+ T cell long-term survival as memory cells and suggest that microbial metabolites guide the metabolic rewiring of activated CD8+ T cells to enable this transition.


Assuntos
Butiratos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Ácidos Graxos Voláteis/metabolismo , Memória Imunológica , Microbiota/imunologia , Transferência Adotiva , Animais , Antígenos/imunologia , Diferenciação Celular , Células Cultivadas , Glicólise , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução
2.
PLoS Pathog ; 19(9): e1011666, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37733817

RESUMO

Prior infection can generate protective immunity against subsequent infection, although the efficacy of such immunity can vary considerably. Live-attenuated vaccines (LAVs) are one of the most effective methods for mimicking this natural process, and analysis of their efficacy has proven instrumental in the identification of protective immune mechanisms. Here, we address the question of what makes a LAV efficacious by characterising immune responses to a LAV, termed TAS2010, which is highly protective (80-90%) against lethal murine salmonellosis, in comparison with a moderately protective (40-50%) LAV, BRD509. Mice vaccinated with TAS2010 developed immunity systemically and were protected against gut-associated virulent infection in a CD4+ T cell-dependent manner. TAS2010-vaccinated mice showed increased activation of Th1 responses compared with their BRD509-vaccinated counterparts, leading to increased Th1 memory populations in both lymphoid and non-lymphoid organs. The optimal development of Th1-driven immunity was closely correlated with the activation of CD11b+Ly6GnegLy6Chi inflammatory monocytes (IMs), the activation of which can be modulated proportionally by bacterial load in vivo. Upon vaccination with the LAV, IMs expressed T cell chemoattractant CXCL9 that attracted CD4+ T cells to the foci of infection, where IMs also served as a potent source of antigen presentation and Th1-promoting cytokine IL-12. The expression of MHC-II in IMs was rapidly upregulated following vaccination and then maintained at an elevated level in immune mice, suggesting IMs may have a role in sustained antigen stimulation. Our findings present a longitudinal analysis of CD4+ T cell development post-vaccination with an intracellular bacterial LAV, and highlight the benefit of inflammation in the development of Th1 immunity. Future studies focusing on the induction of IMs may reveal key strategies for improving vaccine-induced T cell immunity.


Assuntos
Linfócitos T CD4-Positivos , Infecções por Salmonella , Camundongos , Animais , Monócitos , Vacinas Atenuadas , Inflamação
3.
Immunol Cell Biol ; 102(8): 721-733, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38873699

RESUMO

Antibiotic resistance is a major public health threat, and alternatives to antibiotic therapy are urgently needed. Immunotherapy, particularly the blockade of inhibitory immune checkpoints, is a leading treatment option in cancer and autoimmunity. In this study, we used a murine model of Salmonella Typhimurium infection to investigate whether immune checkpoint blockade could be applied to bacterial infection. We found that the immune checkpoint T-cell immunoglobulin and ITIM domain (TIGIT) was significantly upregulated on lymphocytes during infection, particularly on CD4+ T cells, drastically limiting their proinflammatory function. Blockade of TIGIT in vivo using monoclonal antibodies was able to enhance immunity and improve bacterial clearance. The efficacy of anti-TIGIT was dependent on the capacity of the antibody to bind to Fc (fragment crystallizable) receptors, giving important insights into the mechanism of anti-TIGIT therapy. This research suggests that targeting immune checkpoints, such as TIGIT, has the potential to enhance immune responses toward bacteria and restore antibacterial treatment options in the face of antibiotic resistance.


Assuntos
Infecções Bacterianas , Imunoterapia , Camundongos Endogâmicos C57BL , Receptores Imunológicos , Regulação para Cima , Animais , Receptores Imunológicos/metabolismo , Imunoterapia/métodos , Camundongos , Regulação para Cima/efeitos dos fármacos , Infecções Bacterianas/imunologia , Infecções Bacterianas/terapia , Salmonella typhimurium/imunologia , Linfócitos T/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Modelos Animais de Doenças , Anticorpos Monoclonais/farmacologia , Humanos
4.
Nat Immunol ; 13(2): 162-9, 2012 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-22231517

RESUMO

Memory T cells exert antigen-independent effector functions, but how these responses are regulated is unclear. We discovered an in vivo link between flagellin-induced NLRC4 inflammasome activation in splenic dendritic cells (DCs) and host protective interferon-γ (IFN-γ) secretion by noncognate memory CD8(+) T cells, which could be activated by Salmonella enterica serovar Typhimurium, Yersinia pseudotuberculosis and Pseudomonas aeruginosa. We show that CD8α(+) DCs were particularly efficient at sensing bacterial flagellin through NLRC4 inflammasomes. Although this activation released interleukin 18 (IL-18) and IL-1ß, only IL-18 was required for IFN-γ production by memory CD8(+) T cells. Conversely, only the release of IL-1ß, but not IL-18, depended on priming signals mediated by Toll-like receptors. These findings provide a comprehensive mechanistic framework for the regulation of noncognate memory T cell responses during bacterial immunity.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Células Dendríticas/imunologia , Memória Imunológica , Inflamassomos/imunologia , Interferon gama/imunologia , Animais , Flagelina/imunologia , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Camundongos , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Transdução de Sinais/imunologia , Baço/imunologia , Receptores Toll-Like/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia
5.
Immunity ; 42(1): 108-22, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25607461

RESUMO

The probabilistic expression of cytokine genes in differentiated T helper (Th) cell populations remains ill defined. By single-cell analyses and mathematical modeling, we show that one stimulation featured stable cytokine nonproducers as well as stable producers with wide cell-to-cell variability in the magnitude of expression. Focusing on interferon-γ (IFN-γ) expression by Th1 cells, mathematical modeling predicted that this behavior reflected different cell-intrinsic capacities and not mere gene-expression noise. In vivo, Th1 cells sort purified by secreted IFN-γ amounts preserved a quantitative memory for both probability and magnitude of IFN-γ re-expression for at least 1 month. Mechanistically, this memory resulted from quantitatively distinct transcription of individual alleles and was controlled by stable expression differences of the Th1 cell lineage-specifying transcription factor T-bet. Functionally, Th1 cells with graded IFN-γ production competence differentially activated Salmonella-infected macrophages for bacterial killing. Thus, individual Th cells commit to produce distinct amounts of a given cytokine, thereby generating functional intrapopulation heterogeneity.


Assuntos
Interferon gama/metabolismo , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Macrófagos/imunologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Células Th1/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Contagem de Colônia Microbiana , Regulação da Expressão Gênica , Memória Imunológica , Interferon gama/genética , Interferon gama/imunologia , Ativação Linfocitária , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Teóricos , Receptores de Interferon/genética , Análise de Célula Única , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Células Th1/virologia , Carga Viral , Receptor de Interferon gama
6.
PLoS Pathog ; 17(10): e1010004, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695149

RESUMO

While Salmonella enterica is seen as an archetypal facultative intracellular bacterial pathogen where protection is mediated by CD4+ T cells, identifying circulating protective cells has proved very difficult, inhibiting steps to identify key antigen specificities. Exploiting a mouse model of vaccination, we show that the spleens of C57BL/6 mice vaccinated with live-attenuated Salmonella serovar Typhimurium (S. Typhimurium) strains carried a pool of IFN-γ+ CD4+ T cells that could adoptively transfer protection, but only transiently. Circulating Salmonella-reactive CD4+ T cells expressed the liver-homing chemokine receptor CXCR6, accumulated over time in the liver and assumed phenotypic characteristics associated with tissue-associated T cells. Liver memory CD4+ T cells showed TCR selection bias and their accumulation in the liver could be inhibited by blocking CXCL16. These data showed that the circulation of CD4+ T cells mediating immunity to Salmonella is limited to a brief window after which Salmonella-specific CD4+ T cells migrate to peripheral tissues. Our observations highlight the importance of triggering tissue-specific immunity against systemic infections.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Memória Imunológica/imunologia , Fígado/imunologia , Salmonelose Animal/imunologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Salmonella typhimurium/imunologia
7.
Microb Pathog ; 180: 106120, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37080500

RESUMO

Toxoplasma gondii is a highly prevalent protozoan that infects a broad spectrum of warm-blooded animals. Profilin is a critical protein that plays a role in the movement and invasion of T. gondii. In the current study, we assessed how profilin stimulates inflammasomes and how it induces transcription and secretion of IL-1ß. For this purpose, we assessed the level of TLR 2, 4, 5, and 9 expressions in a THP-1 cell line treated with profilin from T. gondii (TgP). In addition, we analyzed the expression levels of various inflammasomes, as well as IL-1ß, and IL-18 in THP-1 cells treated with the NLRP3 inhibitor MCC950. TgP significantly increased the expression of TLR5 but the expression of TLR2, 4, and 9 was not significantly increased. In addition, TgP did not significantly increase the level of inflammasomes after 5 h. Treatment with MCC950 significantly reduced NLRP3 and IL-1ß on both transcription and protein levels. Although the transcription level of NLRP3 was reduced 5 h after treatment with TgP, western blot analysis showed an increase in NLRP3. The western blot and ELISA analysis also showed that TgP increased both pro- and mature IL-1ß. In summary, our study showed that NLRP3 most probably plays a pivotal role in the expression and production levels of IL-1ß during the interaction between TgP and macrophages.


Assuntos
Toxoplasma , Animais , Humanos , Toxoplasma/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células THP-1 , Profilinas , Interleucina-1beta/metabolismo
8.
Int Immunol ; 34(5): 231-248, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34850883

RESUMO

The pulmonary immune system plays a vital role in protecting the delicate structures of gaseous exchange against invasion from bacterial pathogens. With antimicrobial resistance becoming an increasing concern, finding novel strategies to develop vaccines against bacterial lung diseases remains a top priority. In order to do so, a continued expansion of our understanding of the pulmonary immune response is warranted. While some aspects are well characterized, emerging paradigms such as the importance of innate cells and inducible immune structures in mediating protection provide avenues of potential to rethink our approach to vaccine development. In this review, we aim to provide a broad overview of both the innate and adaptive immune mechanisms in place to protect the pulmonary tissue from invading bacterial organisms. We use specific examples from several infection models and human studies to depict the varying functions of the pulmonary immune system that may be manipulated in future vaccine development. Particular emphasis has been placed on emerging themes that are less reviewed and underappreciated in vaccine development studies.


Assuntos
Vacinação , Vacinas , Humanos , Imunidade , Pulmão
9.
Proc Natl Acad Sci U S A ; 117(34): 20848-20859, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32778586

RESUMO

Tuberculosis (TB) claims 1.5 million lives per year. This situation is largely due to the low efficacy of the only licensed TB vaccine, Bacillus Calmette-Guérin (BCG) against pulmonary TB. The metabolic disease type 2 diabetes (T2D) is a risk factor for TB and the mechanisms underlying increased TB susceptibility in T2D are not well understood. Furthermore, it is unknown if new TB vaccines will provide protection in the context of T2D. Here we used a diet-induced murine model of T2D to investigate the underlying mechanisms of TB/T2D comorbidity and to evaluate the protective capacity of two experimental TB vaccines in comparison to conventional BCG. Our data reveal a distinct immune dysfunction that is associated with diminished recognition of mycobacterial antigens in T2D. More importantly, we provide compelling evidence that mucosal delivery of recombinant BCG strains expressing the Mycobacterium tuberculosis (Mtb) ESX-1 secretion system (BCG::RD1 and BCG::RD1 ESAT-6 ∆92-95) are safe and confer superior immunity against aerosol Mtb infection in the context of T2D. Our findings suggest that the remarkable anti-TB immunity by these recombinant BCG strains is achieved via augmenting the numbers and functional capacity of antigen presenting cells in the lungs of diabetic mice.


Assuntos
Antígenos de Bactérias/farmacologia , Proteínas de Bactérias/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Vacina BCG , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa/imunologia , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Vacinas contra a Tuberculose/imunologia , Vacinação
10.
Clin Microbiol Rev ; 34(4): e0034820, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34494873

RESUMO

About half of the world's population and 80% of the world's biodiversity can be found in the tropics. Many diseases are specific to the tropics, with at least 41 diseases caused by endemic bacteria, viruses, parasites, and fungi. Such diseases are of increasing concern, as the geographic range of tropical diseases is expanding due to climate change, urbanization, change in agricultural practices, deforestation, and loss of biodiversity. While traditional medicines have been used for centuries in the treatment of tropical diseases, the active natural compounds within these medicines remain largely unknown. In this review, we describe infectious diseases specific to the tropics, including their causative pathogens, modes of transmission, recent major outbreaks, and geographic locations. We further review current treatments for these tropical diseases, carefully consider the biodiscovery potential of the tropical biome, and discuss a range of technologies being used for drug development from natural resources. We provide a list of natural products with antimicrobial activity, detailing the source organisms and their effectiveness as treatment. We discuss how technological advancements, such as next-generation sequencing, are driving high-throughput natural product screening pipelines to identify compounds with therapeutic properties. This review demonstrates the impact natural products from the vast tropical biome have in the treatment of tropical infectious diseases and how high-throughput technical capacity will accelerate this discovery process.


Assuntos
Produtos Biológicos , Doenças Transmissíveis , Biodiversidade , Produtos Biológicos/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/epidemiologia , Humanos , Clima Tropical
11.
Am J Physiol Cell Physiol ; 323(5): C1444-C1474, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189975

RESUMO

Mycobacterium tuberculosis (Mtb) is the pathogen that causes tuberculosis (TB), a leading infectious disease of humans worldwide. One of the main histopathological hallmarks of TB is the formation of granulomas comprised of elaborately organized aggregates of immune cells containing the pathogen. Dissemination of Mtb from infected cells in the granulomas due to host and mycobacterial factors induces multiple cell death modalities in infected cells. Based on molecular mechanism, morphological characteristics, and signal dependency, there are two main categories of cell death: programmed and nonprogrammed. Programmed cell death (PCD), such as apoptosis and autophagy, is associated with a protective response to Mtb by keeping the bacteria encased within dead macrophages that can be readily phagocytosed by arriving in uninfected or neighboring cells. In contrast, non-PCD necrotic cell death favors the pathogen, resulting in bacterial release into the extracellular environment. Multiple types of cell death in the PCD category, including pyroptosis, necroptosis, ferroptosis, ETosis, parthanatos, and PANoptosis, may be involved in Mtb infection. Since PCD pathways are essential for host immunity to Mtb, therapeutic compounds targeting cell death signaling pathways have been experimentally tested for TB treatment. This review summarizes different modalities of Mtb-mediated host cell deaths, the molecular mechanisms underpinning host cell death during Mtb infection, and its potential implications for host immunity. In addition, targeting host cell death pathways as potential therapeutic and preventive approaches against Mtb infection is also discussed.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Mycobacterium tuberculosis/metabolismo , Morte Celular , Macrófagos/metabolismo , Granuloma/metabolismo , Granuloma/microbiologia , Granuloma/patologia , Interações Hospedeiro-Patógeno
12.
Immun Ageing ; 19(1): 11, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193613

RESUMO

γδ T cells are a highly versatile immune lineage involved in host defense and homeostasis, but questions remain around their heterogeneity, precise function and role during health and disease. We used multi-parametric flow cytometry, dimensionality reduction, unsupervised clustering, and self-organizing maps (SOM) to identify novel γδ T cell naïve/memory subsets chiefly defined by CD161 expression levels, a surface membrane receptor that can be activating or suppressive. We used middle-to-old age individuals given immune blockade is commonly used in this population. Whilst most Vδ1+subset cells exhibited a terminal differentiation phenotype, Vδ1- subset cells showed an early memory phenotype. Dimensionality reduction revealed eight γδ T cell clusters chiefly diverging through CD161 expression with CD4 and CD8 expression limited to specific subpopulations. Comparison of matched healthy elderly individuals to bronchiectasis patients revealed elevated Vδ1+ terminally differentiated effector memory cells in patients potentially linking this population with chronic proinflammatory disease.

13.
J Immunol ; 203(10): 2724-2734, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31586037

RESUMO

Alternatively activated macrophages are essential effector cells during type 2 immunity and tissue repair following helminth infections. We previously showed that Ym1, an alternative activation marker, can drive innate IL-1R-dependent neutrophil recruitment during infection with the lung-migrating nematode, Nippostrongylus brasiliensis, suggesting a potential role for the inflammasome in the IL-1-mediated innate response to infection. Although inflammasome proteins such as NLRP3 have important proinflammatory functions in macrophages, their role during type 2 responses and repair are less defined. We therefore infected Nlrp3 -/- mice with N. brasiliensis Unexpectedly, compared with wild-type (WT) mice, infected Nlrp3 -/- mice had increased neutrophilia and eosinophilia, correlating with enhanced worm killing but at the expense of increased tissue damage and delayed lung repair. Transcriptional profiling showed that infected Nlrp3 -/- mice exhibited elevated type 2 gene expression compared with WT mice. Notably, inflammasome activation was not evident early postinfection with N. brasiliensis, and in contrast to Nlrp3 -/- mice, antihelminth responses were unaffected in caspase-1/11-deficient or WT mice treated with the NLRP3-specific inhibitor MCC950. Together these data suggest that NLRP3 has a role in constraining lung neutrophilia, helminth killing, and type 2 immune responses in an inflammasome-independent manner.


Assuntos
Inflamassomos/fisiologia , Pneumopatias Parasitárias/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Nippostrongylus/imunologia , Infecções por Strongylida/imunologia , Animais , Caspase 1/fisiologia , Quimiotaxia de Leucócito , Eosinofilia/etiologia , Eosinofilia/imunologia , Furanos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis , Imunidade Inata , Indenos , Interleucina-4/farmacologia , Lectinas/biossíntese , Lectinas/genética , Pulmão/patologia , Pulmão/fisiologia , Pneumopatias Parasitárias/complicações , Pneumopatias Parasitárias/patologia , Pneumopatias Parasitárias/fisiopatologia , Macrófagos Alveolares/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neutrófilos/imunologia , Regeneração , Infecções por Strongylida/complicações , Infecções por Strongylida/patologia , Infecções por Strongylida/fisiopatologia , Sulfonamidas/farmacologia , Sulfonas , Transcrição Gênica , beta-N-Acetil-Hexosaminidases/biossíntese , beta-N-Acetil-Hexosaminidases/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-33046495

RESUMO

Comorbid type 2 diabetes poses a great challenge to the global control of tuberculosis. Here, we assessed the efficacy of metformin (MET), an antidiabetic drug, in mice infected with a very low dose of Mycobacterium tuberculosis In contrast to diabetic mice, infected nondiabetic mice that received the same therapeutic concentration of MET presented with significantly higher disease burden. This warrants further studies to investigate the disparate efficacy of MET against tuberculosis in diabetic and nondiabetic individuals.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Metformina , Mycobacterium tuberculosis , Tuberculose , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Tuberculose/tratamento farmacológico
15.
J Nat Prod ; 83(11): 3454-3463, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33166137

RESUMO

Marine organisms produce a diverse range of toxins and bioactive peptides to support predation, competition, and defense. The peptide repertoires of stony corals (order Scleractinia) remain relatively understudied despite the presence of tentacles used for predation and defense that are likely to contain a range of bioactive compounds. Here, we show that a tentacle extract from the mushroom coral, Heliofungia actiniformis, contains numerous peptides with a range of molecular weights analogous to venom profiles from species such as cone snails. Using NMR spectroscopy and mass spectrometry we characterized a 12-residue peptide (Hact-1) with a new sequence (GCHYTPFGLICF) and well-defined ß-hairpin structure stabilized by a single disulfide bond. The sequence is encoded within the genome of the coral and expressed in the polyp body tissue. The structure present is common among toxins and venom peptides, but Hact-1 does not show activity against select examples of Gram-positive and Gram-negative bacteria or a range of ion channels, common properties of such peptides. Instead, it appears to have a limited effect on human peripheral blood mononuclear cells, but the ecological function of the peptide remains unknown. The discovery of this peptide from H. actiniformis is likely to be the first of many from this and related species.


Assuntos
Antozoários/química , Antibacterianos/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Peptídeos/farmacologia
16.
PLoS Pathog ; 13(10): e1006676, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29040326

RESUMO

Mycobacterium tuberculosis (Mtb) primarily resides in the lung but can also persist in extrapulmonary sites. Macrophages are considered the prime cellular habitat in all tissues. Here we demonstrate that Mtb resides inside adipocytes of fat tissue where it expresses stress-related genes. Moreover, perigonadal fat of Mtb-infected mice disseminated the infection when transferred to uninfected animals. Adipose tissue harbors leukocytes in addition to adipocytes and other cell types and we observed that Mtb infection induces changes in adipose tissue biology depending on stage of infection. Mice infected via aerosol showed infiltration of inducible nitric oxide synthase (iNOS) or arginase 1 (Arg1)-negative F4/80+ cells, despite recruitment of CD3+, CD4+ and CD8+ T cells. Gene expression analysis of adipose tissue of aerosol Mtb-infected mice provided evidence for upregulated expression of genes associated with T cells and NK cells at 28 days post-infection. Strikingly, IFN-γ-producing NK cells and Mtb-specific CD8+ T cells were identified in perigonadal fat, specifically CD8+CD44-CD69+ and CD8+CD44-CD103+ subpopulations. Gene expression analysis of these cells revealed that they expressed IFN-γ and the lectin-like receptor Klrg1 and down-regulated CD27 and CD62L, consistent with an effector phenotype of Mtb-specific CD8+ T cells. Sorted NK cells expressed higher abundance of Klrg1 upon infection, as well. Our results reveal the ability of Mtb to persist in adipose tissue in a stressed state, and that NK cells and Mtb-specific CD8+ T cells infiltrate infected adipose tissue where they produce IFN-γ and assume an effector phenotype. We conclude that adipose tissue is a potential niche for Mtb and that due to infection CD8+ T cells and NK cells are attracted to this tissue.


Assuntos
Tecido Adiposo/imunologia , Tecido Adiposo/microbiologia , Tuberculose/imunologia , Tuberculose/microbiologia , Latência Viral/imunologia , Adipócitos/microbiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Humanos , Células Matadoras Naturais/imunologia , Camundongos , Mycobacterium tuberculosis/imunologia
17.
Proc Natl Acad Sci U S A ; 110(6): 2252-7, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23345426

RESUMO

IFN-γ is critical for immunity against infections with intracellular pathogens, such as Salmonella enterica. However, which of the many cell types capable of producing IFN-γ controls Salmonella infections remains unclear. Using a mouse model of systemic Salmonella infection, we observed that only a lack of all lymphocytes or CD90 (Thy1)(+) cells, but not the absence of T cells, Retinoic acid-related orphan receptor (ROR)-γt-dependent lymphocytes, (NK)1.1(+) cells, natural killer T (NKT), and/or B cells alone, replicated the highly susceptible phenotype of IFN-γ-deficient mice to Salmonella infection. A combination of antibody depletions and adoptive transfer experiments revealed that early protective IFN-γ was provided by Thy1-expressing natural killer (NK) cells and that these cells improved antibacterial immunity through the provision of IFN-γ. Further analysis of NK cells producing IFN-γ in response to Salmonella indicated that less mature NK cells were more efficient at mediating antibacterial effector function than terminally differentiated NK cells. Inspired by recent reports of Thy1(+) NK cells contributing to immune memory, we analyzed their role in secondary protection against otherwise lethal WT Salmonella infections. Notably, we observed that a newly generated Salmonella vaccine strain not only conferred superior protection compared with conventional regimens but that this enhanced efficiency of recall immunity was afforded by incorporating CD4(-)CD8(-)Thy1(+) cells into the secondary response. Taken together, these findings demonstrate that Thy1-expressing NK cells play an important role in antibacterial immunity.


Assuntos
Interferon gama/biossíntese , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/microbiologia , Salmonelose Animal/imunologia , Salmonella typhimurium , Transferência Adotiva , Animais , Diferenciação Celular/imunologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Interferon gama/deficiência , Interferon gama/genética , Células Matadoras Naturais/classificação , Células Matadoras Naturais/patologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/microbiologia , Subpopulações de Linfócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/imunologia , Antígenos Thy-1/metabolismo
18.
Infect Immun ; 82(12): 4997-5004, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25225248

RESUMO

The rational design of vaccines requires an understanding of the contributions of individual immune cell subsets to immunity. With this understanding, targeted vaccine delivery approaches and adjuvants can be developed to maximize vaccine efficiency and to minimize side effects (S. H. E. Kaufmann et al., Immunity 33:555-577, 2010; T. Ben-Yedidia and R. Arnon, Hum. Vaccines 1:95-101, 2005). We have addressed the contributions of different immune cell subsets and their ability to contribute to the control and clearance of the facultative intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) in a murine model. Using a systematic and reproducible model of experimental attenuated S. Typhimurium infection, we show that distinct lymphocyte deficiencies lead to one of four different infection outcomes: clearance, chronic infection, early death, or late death. Our study demonstrates a high level of functional redundancy in the ability of different lymphocyte subsets to provide interferon gamma (IFN-γ), a critical cytokine in Salmonella immunity. Whereas early control of the infection was entirely dependent on IFN-γ but not on any particular lymphocyte subset, clearance of the infection critically required CD4(+) T cells but appeared to be independent of IFN-γ. These data reinforce the idea of a bimodal immune response against Salmonella: an early T cell-independent but IFN-γ-dependent phase and a late T cell-dependent phase that may be IFN-γ independent.


Assuntos
Subpopulações de Linfócitos/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Animais , Modelos Animais de Doenças , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Salmonelose Animal/microbiologia
19.
Microbiol Spectr ; 12(8): e0047324, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38980014

RESUMO

Innate immune cells, such as macrophages, mount an immune response upon exposure to antigens and pathogens. Emerging evidence shows that macrophages exposed to an antigen can generate a "memory-like" response (a.k.a. trained immunity), which confers a non-specific and enhanced response upon subsequent stimulation with a second antigen/microbe. This trained immunity has been implicated in the enhanced response of macrophages against several invading pathogens. However, the association between the nature of the antigen and the corresponding immune correlate of elicited trained immunity is not fully understood. Similarly, the response of macrophages trained and restimulated with homologous stimulants to subsequent infection by pathogenic Mycobacterium tuberculosis (Mtb) remains unexplored. Here, we report the immune and metabolic profiles of trained immunity in human THP-1-derived macrophages after homologous training and restimulation with BCG, LPS, purified protein Derivative (PPD), heat-killed Mtb strains HN878 (hk-HN), and CDC1551 (hk-CDC). Furthermore, the impact of training on the autophagic and antimicrobial responses of macrophages with or without subsequent infection by clinical Mtb isolates HN878 and CDC1551 was evaluated. Results show that repeated stimulation of macrophages with different antigens displays distinct pro-inflammatory, metabolic, antimicrobial, and autophagy induction profiles. These macrophages also induce a differential antimicrobial response upon infection with clinical Mtb HN878 and CDC1551 isolates. A significantly reduced intracellular bacterial load was noted in the stimulated macrophages, which was augmented by the addition of rapamycin, an autophagy inducer. These observations suggest that the nature of the antigen and the mode of stimulation shape the magnitude and breadth of macrophage innate memory response, which impacts subsequent response to Mtb infection. IMPORTANCE: Trained immunity (a.k.a. innate memory response) is a novel concept that has been rapidly emerging as a mechanism underpinning the non-specific immunity of innate immune cells, such as macrophages. However, the association between the nature of the stimuli and the corresponding immune correlate of trained immunity is not fully understood. Similarly, the kinetics of immunological and metabolic characteristics of macrophages upon "training" by the same antigen as primary and secondary stimuli (homologous stimulation) are not fully characterized. Furthermore, the ability of antigens such as purified protein derivative (PPD) and heat-killed-Mtb to induce trained immunity remains unknown. Similarly, the response of macrophages primed and trained by homologous stimulants to subsequent infection by pathogenic Mtb is yet to be reported. In this study, we evaluated the hypothesis that the nature of the stimuli impacts the depth and breadth of trained immunity in macrophages, which differentially affects their response to Mtb infection.


Assuntos
Antígenos de Bactérias , Imunidade Inata , Memória Imunológica , Macrófagos , Mycobacterium tuberculosis , Tuberculose , Mycobacterium tuberculosis/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Humanos , Imunidade Inata/imunologia , Antígenos de Bactérias/imunologia , Memória Imunológica/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Citocinas/metabolismo , Citocinas/imunologia , Autofagia/imunologia , Células THP-1
20.
Vaccine ; 42(24): 126291, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39241355

RESUMO

Bacille Calmette-Guérin (BCG) remains the only licensed vaccine against tuberculosis (TB). While BCG protects against TB in children, its protection against pulmonary TB in adults is suboptimal, and the development of a better TB vaccine is a global health priority. Previously, we reported two recombinant BCG strains effective against murine TB with low virulence and lung pathology in immunocompromised mice and guinea pigs. We have recently combined these two recombinant BCG strains into one novel vaccine candidate (BCGΔBCG1419c::ESAT6-PE25SS) and evaluated its immunogenicity, efficacy and safety profile in mice. This new vaccine candidate is non-inferior to BCG in protection against TB, presents reduced pro-inflammatory immune responses and displays an enhanced safety profile.


Assuntos
Vacina BCG , Hospedeiro Imunocomprometido , Vacinas Sintéticas , Animais , Vacina BCG/imunologia , Vacina BCG/efeitos adversos , Vacina BCG/genética , Camundongos , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Feminino , Tuberculose/prevenção & controle , Tuberculose/imunologia , Mycobacterium bovis/imunologia , Mycobacterium bovis/genética , Mycobacterium bovis/patogenicidade , Modelos Animais de Doenças , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Camundongos Endogâmicos C57BL , Pulmão/microbiologia , Pulmão/patologia , Pulmão/imunologia , Tuberculose Pulmonar/prevenção & controle , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Eficácia de Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA