RESUMO
Endonuclease V (EndoV) cleaves the second phosphodiester bond 3' to a deaminated adenosine (inosine). Although highly conserved, EndoV homologs change substrate preference from DNA in bacteria to RNA in eukaryotes. We have characterized EndoV from six different species and determined crystal structures of human EndoV and three EndoV homologs from bacteria to mouse in complex with inosine-containing DNA/RNA hybrid or double-stranded RNA (dsRNA). Inosine recognition is conserved, but changes in several connecting loops in eukaryotic EndoV confer recognition of 3 ribonucleotides upstream and 7 or 8 bp of dsRNA downstream of the cleavage site, and bacterial EndoV binds only 2 or 3 nt flanking the scissile phosphate. In addition to the two canonical metal ions in the active site, a third Mn2+ that coordinates the nucleophilic water appears necessary for product formation. Comparison of EndoV with its homologs RNase H1 and Argonaute reveals the principles by which these enzymes recognize RNA versus DNA.
Assuntos
Proteínas de Bactérias/metabolismo , Reparo do DNA , DNA Bacteriano/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Evolução Molecular , Inosina/metabolismo , RNA/metabolismo , Ribonuclease H/metabolismo , Animais , Proteínas Argonautas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , DNA Bacteriano/química , DNA Bacteriano/genética , Desoxirribonuclease (Dímero de Pirimidina)/química , Desoxirribonuclease (Dímero de Pirimidina)/genética , Humanos , Magnésio/metabolismo , Manganês/metabolismo , Camundongos , Conformação de Ácido Nucleico , Conformação Proteica , RNA/química , RNA/genética , Ribonuclease H/química , Ribonuclease H/genética , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
The SLX4 Fanconi anemia protein is a tumor suppressor that may act as a key regulator that engages the cell into specific genome maintenance pathways. Here, we show that the SLX4 complex is a SUMO E3 ligase that SUMOylates SLX4 itself and the XPF subunit of the DNA repair/recombination XPF-ERCC1 endonuclease. This SLX4-dependent activity is mediated by a remarkably specific interaction between SLX4 and the SUMO-charged E2 conjugating enzyme UBC9 and relies not only on newly identified SUMO-interacting motifs (SIMs) in SLX4 but also on its BTB domain. In contrast to its ubiquitin-binding UBZ4 motifs, SLX4 SIMs are dispensable for its DNA interstrand crosslink repair functions. Instead, while detrimental in response to global replication stress, the SUMO E3 ligase activity of the SLX4 complex is critical to prevent mitotic catastrophe following common fragile site expression.
Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Genoma , Subunidades Proteicas/metabolismo , Recombinases/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Replicação do DNA , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Instabilidade Genômica , Humanos , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinases/genética , Alinhamento de Sequência , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genéticaRESUMO
Nucleotide excision repair (NER) is a repair mechanism that removes DNA lesions induced by UV radiation, environmental mutagens and carcinogens. There exists sufficient evidence against acetaldehyde suggesting it to cause a variety of DNA lesions and be carcinogenic to humans. Previously, we found that acetaldehyde induces reversible intra-strand GG crosslinks in DNA similar to those induced by cis-diammineplatinum(II) that is subsequently repaired by NER. In this study, we analysed the repairability by NER mechanism and the mutagenesis of acetaldehyde. In an in vitro reaction setup with NER-proficient and NER-deficient xeroderma pigmentosum group A (XPA) cell extracts, NER reactions were observed in the presence of XPA recombinant proteins in acetaldehyde-treated plasmids. Using an in vivo assay with living XPA cells and XPA-correcting XPA cells, the repair reactions were also observed. Additionally, it was observed that DNA polymerase eta inserted dATP opposite guanine in acetaldehyde-treated oligonucleotides, suggesting that acetaldehyde-induced GG-to-TT transversions. These findings show that acetaldehyde induces NER repairable mutagenic DNA lesions.
Assuntos
Acetaldeído/efeitos adversos , Reparo do DNA/efeitos dos fármacos , DNA/genética , Mutagênese/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/genética , Fibroblastos/efeitos dos fármacos , Humanos , Mutagênese/genética , Mutagênicos/efeitos adversos , Transfecção/métodos , Raios Ultravioleta , Xeroderma Pigmentoso/genética , Proteína de Xeroderma Pigmentoso Grupo A/genéticaRESUMO
Xeroderma pigmentosum group D (XPD) protein is one of the subunits of TFIIH that is required for nucleotide excision repair and transcription. We found a XPD protein complex containing MMS19 that was assumed to be a regulator of TFIIH. However, the MMS19-XPD complex did not contain any other subunits of TFIIH. Instead, it included FAM96B (now designated MIP18), Ciao1, and ANT2. MMS19, MIP18, and XPD localized to the mitotic spindle during mitosis. The siRNA-mediated knockdown of MMS19, MIP18, or XPD led to improper chromosome segregation and the accumulation of nuclei with abnormal shapes. In addition, the frequency of abnormal mitosis and nuclei was increased in XP-D and XP-D/CS patients' cells. These results indicate that the MMS19-XPD protein complex, now designated MMXD (MMS19-MIP18-XPD), is required for proper chromosome segregation, an abnormality of which could contribute to the pathogenesis in some cases of XP-D and XP-D/CS.
Assuntos
Proteínas de Transporte/metabolismo , Segregação de Cromossomos , Proteínas Nucleares/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/genética , Translocador 2 do Nucleotídeo Adenina/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Forma do Núcleo Celular , Técnicas de Silenciamento de Genes , Células HCT116 , Células HeLa , Humanos , Metalochaperonas/metabolismo , Metaloproteínas , Microscopia de Fluorescência , Mitose , Complexos Multiproteicos , Proteínas Nucleares/genética , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Interferência de RNA , Fuso Acromático/metabolismo , Fatores de Transcrição/genética , Transfecção , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia , Proteína Grupo D do Xeroderma Pigmentoso/genéticaRESUMO
We previously developed a method to detect the cellular ability of nucleotide excision repair, which functions to remove UV-induced lesions in DNA, using a plasmid-type fluorescent probe. A drawback to the popular use of this method was that the oligonucleotide containing the (6-4) photoproduct, which was used as a primer in the plasmid preparation, must be synthesized chemically. In this study, we prepared the probe using a post-synthetically UV-irradiated oligonucleotide as the primer. Transfection of cells demonstrated that this probe detected the repair ability of the cells in the same manner as the original probe.
Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Corantes Fluorescentes/química , Plasmídeos/genética , Raios Ultravioleta , Proteína de Xeroderma Pigmentoso Grupo A/genética , Dano ao DNA/efeitos da radiação , Humanos , TransfecçãoRESUMO
Etoposide is a widely used anticancer drug and a DNA topoisomerase II (Top2) inhibitor. Etoposide produces Top2-attached single-strand breaks (Top2-SSB complex) and double-strand breaks (Top2-DSB complex) that are thought to induce cell death in tumor cells. The Top2-SSB complex is more abundant than the Top2-DSB complex. Human tyrosyl-DNA phosphodiesterase 2 (TDP2) is required for efficient repair of Top2-DSB complexes. However, the identities of the proteins involved in the repair of Top2-SSB complexes are unknown, although yeast genetic data indicate that 5' to 3' structure-specific DNA endonuclease activity is required for alternative repair of Top2 DNA damage. In this study, we purified a flap endonuclease 1 (FEN1) and xeroderma pigmentosum group G protein (XPG) in the 5' to 3' structure-specific DNA endonuclease family and synthesized single-strand break DNA substrates containing a 5'-phoshotyrosyl bond, mimicking the Top2-SSB complex. We found that FEN1 and XPG did not remove the 5'-phoshotyrosyl bond-containing DSB substrates but removed the 5'-phoshotyrosyl bond-containing SSB substrates. Under DNA repair conditions, FEN1 efficiently repaired the 5'-phoshotyrosyl bond-containing SSB substrates in the presence of DNA ligase and DNA polymerase. Therefore, FEN1 may play an important role in the repair of Top2-SSB complexes in etoposide-treated cells.
Assuntos
Quebras de DNA de Cadeia Simples , Reparo do DNA/fisiologia , Endonucleases Flap/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/genética , DNA Ligases/metabolismo , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Reparo do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia , Endonucleases/metabolismo , Endonucleases/farmacologia , Etoposídeo/farmacologia , Endonucleases Flap/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacologia , Diester Fosfórico Hidrolases , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Recombinantes/farmacologia , Inibidores da Topoisomerase II/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologiaRESUMO
Nucleoside/nucleotide analogs that lack the 3'-hydroxy group are widely utilized for HIV therapy. These chain-terminating nucleoside analogs (CTNAs) block DNA synthesis after their incorporation into growing DNA, leading to the antiviral effects. However, they are also considered to be DNA damaging agents, and tyrosyl-DNA phosphodiesterase 1, a DNA repair enzyme, is reportedly able to remove such CTNA-modifications of DNA. Here, we have synthesized phosphoramidite building blocks of representative CTNAs, such as acyclovir, abacavir, carbovir, and lamivudine, and oligonucleotides with the 3'-CTNAs were successfully synthesized on solid supports. Using the chemically synthesized oligonucleotides, we investigated the excision of the 3'-CTNAs in DNA by the human excision repair cross complementing protein 1-xeroderma pigmentosum group F (ERCC1-XPF) endonuclease, which is one of the main components of the nucleotide excision repair pathway. A biochemical analysis demonstrated that the ERCC1-XPF endonuclease cleaved 2-7 nt upstream from the 3'-blocking CTNAs, and that DNA synthesis by the Klenow fragment was resumed after the removal of the CTNAs, suggesting that ERCC1-XPF participates in the repair of the CTNA-induced DNA damage.
Assuntos
Infecções por HIV/genética , HIV/genética , Nucleosídeos/genética , Compostos Organofosforados/síntese química , Aciclovir/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , HIV/patogenicidade , Infecções por HIV/tratamento farmacológico , Humanos , Nucleosídeos/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/uso terapêuticoRESUMO
Topoisomerase 1 (Top1) is the intercellular target of camptothecins (CPTs). CPT blocks DNA religation in the Top1-DNA complex and induces Top1-attached nick DNA lesions. In this study, we demonstrate that excision repair cross complementing 1 protein-xeroderma pigmentosum group F (ERCC1-XPF) endonuclease and replication protein A (RPA) participate in the repair of Top1-attached nick DNA lesions together with other nucleotide excision repair (NER) factors. ERCC1-XPF shows nuclease activity in the presence of RPA on a 3'-phosphotyrosyl bond nick-containing DNA (Tyr-nick DNA) substrate, which mimics a Top1-attached nick DNA lesion. In addition, ERCC1-XPF and RPA form a DNA/protein complex on the nick DNA substrate in vitro, and co-localize in CPT-treated cells in vivo. Moreover, the DNA repair synthesis of Tyr-nick DNA lesions occurred in the presence of NER factors, including ERCC1-XPF, RPA, DNA polymerase delta, flap endonuclease 1 and DNA ligase 1. Therefore, some of the NER repair machinery might be an alternative repair pathway for Top1-attached nick DNA lesions. Clinically, these data provide insights into the potential of ERCC1 as a biomarker during CPT regimens.
Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Camptotecina/farmacologia , DNA/biossíntese , Quebras de DNA de Cadeia Simples , Dano ao DNA/efeitos dos fármacos , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , DNA Topoisomerases Tipo I/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endonucleases Flap/metabolismo , Células HeLa/efeitos dos fármacos , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Tirosina/metabolismoRESUMO
Deamination of bases is a form of DNA damage that occurs spontaneously via the hydrolysis and nitrosation of living cells, generating hypoxanthine from adenine. E. coli endonuclease V (eEndoV) cleaves hypoxanthine-containing double-stranded DNA, whereas human endonuclease V (hEndoV) cleaves hypoxanthine-containing RNA; however, hEndoV in vivo function remains unclear. To date, hEndoV has only been examined using hypoxanthine, because it binds closely to the base located at the cleavage site. Here, we examined whether hEndoV cleaves other lesions (e.g., AP site, 6-methyladenine, xanthine) to reveal its function and whether 2'-nucleoside modification affects its cleavage activity. We observed that hEndoV is hypoxanthine-specific; its activity was the highest with 2'-OH modification in ribose. The cleavage activity of hEndoV was compared based on its base sequence. We observed that it has specificity for adenine located on the 3'-end of hypoxanthine at the cleavage site, both before and after cleavage. These data suggest that hEndoV recognizes and cleaves the inosine generated on the poly A tail to maintain RNA quality. Our results provide mechanistic insight into the role of hEndoV in vivo.
Assuntos
Inosina , Inosina/metabolismo , Humanos , Poli A/metabolismo , Especificidade por Substrato , Hipoxantina/metabolismo , Hipoxantina/química , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/químicaRESUMO
The T7 gene 3 product, T7 endonuclease I, acts on various substrates with DNA structures, including Holliday junctions, heteroduplex DNAs and single-mismatch DNAs. Genetic analyses have suggested the occurrence of DNA recombination, replication and repair in Escherichia coli. In this study, T7 endonuclease I digested UV-irradiated covalently closed circular plasmid DNA into linear and nicked plasmid DNA, suggesting that the enzyme generates single- and double-strand breaks (SSB and DSB). To further investigate the biochemical functions of T7 endonuclease I, we have analysed endonuclease activity in UV-induced DNA substrates containing a single lesion, cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PP). Interestingly, the leading cleavage site for CPD by T7 endonuclease I is at the second and fifth phosphodiester bonds that are 5' to the lesion of CPD on the lesion strand. However, in the case of 6-4PP, the cleavage pattern on the lesion strand resembled that of CPD, and T7 endonuclease I could also cleave the second phosphodiester bond that is 5' to the adenine-adenine residues opposite the lesion, indicating that the enzyme produces DSB in DNA containing 6-4PP. These findings suggest that T7endonuclease I accomplished successful UV damage repair by SSB in CPD and DSB in 6-4PP.
Assuntos
Dano ao DNA , Desoxirribonuclease I , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/química , DNA/metabolismo , DNA/química , Escherichia coli/genética , Escherichia coli/metabolismo , Bacteriófago T7/enzimologia , Bacteriófago T7/genética , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/química , Reparo do DNARESUMO
Annotating genomic sequence alterations is sometimes a difficult decision, particularly in missense variants with uncertain pathogenic significance and also in those presumed as germline pathogenic variants. We here suggest that mutation spectrum may also be useful for judging them. From the public databases, 982 BRCA1/1861 BRCA2 germline missense variants and 294 BRCA1/420 BRCA2 somatic missense variants were obtained. We then compared their mutation spectra, i.e., the frequencies of two transition- and four transversion-type mutations, in each category. Intriguingly, in BRCA1 variants, A:T to C:G transversion, which was relatively frequent in the germline, was extremely rare in somatic, particularly breast cancer, cells (p = .03). Conversely, A:T to T:A transversion was most infrequent in the germline, but not rare in somatic cells. Thus, BRCA1 variants with A:T to T:A transversion may be suspected as somatic, and those with A:T to C:G as being in the germline. These tendencies of mutation spectrum may also suggest the biological and chemical origins of the base alterations. On the other hand, unfortunately, variants of uncertain significance (VUS) were not distinguishable by mutation spectrum. Our findings warrant further and more detailed studies.
Assuntos
Neoplasias da Mama , Mutação em Linhagem Germinativa , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias da Mama/genética , Mutação em Linhagem Germinativa/genética , Neoplasias Ovarianas/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Mutação de Sentido Incorreto , Genes BRCA1 , Genes BRCA2RESUMO
We have discovered that 3,3',5-triiodothyronine (T3) inhibits binding of a PIP-box sequence peptide to proliferating cell nuclear antigen (PCNA) protein by competing for the same binding site, as evidenced by the co-crystal structure of the PCNA-T3 complex at 2.1 Å resolution. Based on this observation, we have designed a novel, non-peptide small molecule PCNA inhibitor, T2 amino alcohol (T2AA), a T3 derivative that lacks thyroid hormone activity. T2AA inhibited interaction of PCNA/PIP-box peptide with an IC(50) of ~1 µm and also PCNA and full-length p21 protein, the tightest PCNA ligand protein known to date. T2AA abolished interaction of PCNA and DNA polymerase δ in cellular chromatin. De novo DNA synthesis was inhibited by T2AA, and the cells were arrested in S-phase. T2AA inhibited growth of cancer cells with induction of early apoptosis. Concurrently, Chk1 and RPA32 in the chromatin are phosphorylated, suggesting that T2AA causes DNA replication stress by stalling DNA replication forks. T2AA significantly inhibited translesion DNA synthesis on a cisplatin-cross-linked template in cells. When cells were treated with a combination of cisplatin and T2AA, a significant increase in phospho(Ser(139))histone H2AX induction and cell growth inhibition was observed.
Assuntos
Replicação do DNA/fisiologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Química Farmacêutica/métodos , Cromatina/metabolismo , Cristalografia por Raios X/métodos , Desenho de Fármacos , Citometria de Fluxo/métodos , Genes Reporter , Células HeLa , Humanos , Concentração Inibidora 50 , Ligantes , Microscopia de Fluorescência/métodos , Conformação Molecular , Peptídeos/química , Fosforilação , Mapeamento de Interação de Proteínas/métodos , Proteínas Recombinantes/químicaRESUMO
The nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 2 interacting protein, Nfatc2ip (Nip45), has been implicated as a crucial coordinator of the immune response and of cellular differentiation in humans and mice, and contains SUMO-like domains in its C-terminal region. However, the significance of its N-terminal region and its correlation to the SUMO modification pathway remain largely uncharacterized. In this study, a human cultured cell line was established, in which FLAG-tagged mouse Nip45 (FLAG-mNip45) was stably overexpressed. Under standard, non-stressful conditions, we detected FLAG-mNip45 diffusely distributed in the nucleus. Intriguingly, proteasome inhibition by MG132 caused FLAG-mNip45, together with SUMOylated proteins, to localize in nuclear domains associated with promyelocytic leukemia protein. Finally, using an in vitro binding assay, we showed interaction of the N-terminal region of mNip45 with both free SUMO-3 and SUMO-3 chains, indicating that Nip45 may, in part, exert its function via interaction with SUMO/SUMOylated proteins. Taken together, our study provides novel information on a poorly characterized mammalian protein and suggests that our newly established cell line will be useful for elucidating the physiological role of Nip45.
Assuntos
Núcleo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Animais , Inibidores de Cisteína Proteinase/farmacologia , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leupeptinas/farmacologia , Camundongos , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitinas/metabolismoRESUMO
The xeroderma pigmentosum group F-cross-complementing rodent repair deficiency group 1 (XPF-ERCC1) complex is a structure-specific endonuclease involved in nucleotide excision repair (NER) and interstrand cross-link (ICL) repair. Patients with XPF mutations may suffer from two forms of xeroderma pigmentosum (XP): XP-F patients show mild photosensitivity and proneness to skin cancer but rarely show any neurological abnormalities, whereas XFE patients display symptoms of severe XP symptoms, growth retardation and accelerated aging. Xpf knockout mice display accelerated aging and die before weaning. These results suggest that the XPF-ERCC1 complex has additional functions besides NER and ICL repair and is essential for development and growth. In this study, we show a partial colocalization of XPF with mitotic spindles and Eg5. XPF knockdown in cells led to an increase in the frequency of abnormal nuclear morphology and mitosis. Similarly, the frequency of abnormal nuclei and mitosis was increased in XP-F and XFE cells. In addition, we showed that Eg5 enhances the action of XPF-ERCC1 nuclease activity. Taken together, these results suggest that the interaction between XPF and Eg5 plays a role in mitosis and DNA repair and offer new insights into the pathogenesis of XP-F and XFE.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Cinesinas/metabolismo , Mitose , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Animais , Núcleo Celular/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Cinesinas/genética , CamundongosRESUMO
We previously developed a molecular beacon-type probe to detect the strand scission in cellular base excision repair and found that the phosphodiester linkages in the fluorophore/quencher linkers were cleaved. This reaction was applied to a transfection reporter, which contained the unmodified phosphodiester in the linker to another type of fluorophore. After cotransfection of cells with the probe and the reporter, the signals were used to detect the incision and to confirm the proper transfection, respectively. This method will contribute to the prevention of false-negative results in experiments using molecular beacon-type probes.
Assuntos
Reparo do DNA/genética , Corantes Fluorescentes/análise , Genes Reporter/genética , Sondas Moleculares/química , Transfecção/métodos , Animais , Reações Falso-Negativas , Corantes Fluorescentes/química , Células HeLa , Humanos , Camundongos , Sondas Moleculares/análise , Sensibilidade e EspecificidadeRESUMO
Oxidative DNA lesions inhibit the transcription of RNA polymerase II, but in the presence of transcription elongation factors, the transcription can bypass the lesions. Single-subunit mitochondrial RNA polymerase (mtRNAP) catalyses the synthesis of essential transcripts in mitochondria where reactive oxidative species (ROS) are generated as by-products. The occurrence of RNA synthesis by mtRNAP at oxidative DNA lesions remains unknown. Purified mtRNAP and a complex of RNA primer/DNA template containing a single DNA lesion, such as ROS-induced 8-oxoguanine (8-oxoG), two isomeric thymine glycols (5R-Tg or 5S-Tg), the UV-induced cis-syn cyclobutane pyrimidine dimer (CPD) and the pyrimidine(6-4)pyrimidone photoproduct (6-4pp), or a spontaneous common DNA lesion, a base-loss-induced apurinic/apyrimidinic (AP) site, were used for in vitro RNA synthesis assays. In this report, we show that mtRNAP bypassed the oxidative DNA lesions of non-bulky 8-oxoG and 5R-Tg and 5S-Tg with pausing sites but did not bypass the UV-induced DNA lesions and the AP site. The bacteriophage T7 phage RNA polymerase, which is homologous to mtRNAP, bypassed 8-oxoG but stalled at 5R-Tg and 5S-Tg. As expected, although translesion RNA synthesis in 8-oxoG on the DNA templates generated incorrect transcripts with a G:C to T:A transversion, the synthesis in Tg could lead to the correct transcripts with no transcriptional mutagenesis. Collectively, these data suggest that mtRNAP may tolerate the mitochondrial genome containing oxidative DNA lesions induced by ROS from the side effects of an ATP generation reaction.
Assuntos
Dano ao DNA , Guanina/análogos & derivados , RNA Polimerase II/metabolismo , RNA/biossíntese , Dano ao DNA/efeitos da radiação , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Guanina/química , Guanina/metabolismo , Oxirredução , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Pirimidinonas/química , Pirimidinonas/metabolismo , RNA/química , RNA Polimerase II/genética , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Raios Ultravioleta , Proteínas Virais/química , Proteínas Virais/metabolismoRESUMO
Many chronic inflammatory conditions are associated with an increased risk of cancer development. At the site of inflammation, cellular DNA is damaged by hypochlorous acid (HOCl), a potent oxidant generated by myeloperoxidase. 8-Chloro-2'-deoxyguanosine (8-Cl-dG) is a major DNA adduct formed by HOCl and has been detected from the liver DNA and urine of rats administered lipopolysaccharide in an inflammation model. Thus, the 8-Cl-dG lesion may be associated with the carcinogenesis of inflamed tissues. In this study, we explored the miscoding properties of the 8-Cl-dG adduct generated by human DNA polymerases (pols). Site-specifically modified oligodeoxynucleotide containing a single 8-Cl-dG was prepared and used as a template in primer extension reactions catalysed by human pol α, ĸ or η. Primer extension reactions catalysed by pol α and ĸ in the presence of all four dNTPs were slightly retarded at the 8-Cl-dG site, while pol η readily bypassed the lesion. The fully extended products were analysed to quantify the miscoding frequency and specificity of 8-Cl-dG using two-phased polyacrylamide gel electrophoresis (PAGE). During the primer extension reaction in the presence of four dNTPs, pol ĸ promoted one-base deletion (6.4%), accompanied by the misincorporation of 2'-deoxyguanosine monophosphate (5.5%), dAMP (3.7%), and dTMP (3.5%) opposite the lesion. Pol α and η, on the other hand, exclusively incorporated dCMP opposite the lesion. The steady-state kinetic studies supported the results obtained from the two-phased PAGE assay. These results indicate that 8-Cl-dG is a mutagenic lesion; the miscoding frequency and specificity varies depending on the DNA polymerase used. Thus, HOCl-induced 8-Cl-dG adduct may be involved in inflammation-driven carcinogenesis.
Assuntos
Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/análogos & derivados , Adutos de DNA/química , DNA Polimerase I/química , DNA Polimerase I/metabolismo , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Eletroforese em Gel Bidimensional , Humanos , Cinética , Oligodesoxirribonucleotídeos/químicaRESUMO
The (6-4) photoproduct is one of the major UV-induced lesions in DNA. We previously showed that hydrolytic ring opening of the 5' base and subsequent hydrolysis of the glycosidic bond of the 3' component occurred when this photoproduct was treated with aqueous NaOH. In this study, we found that another product was obtained when the (6-4) photoproduct was heated at 90 °C for 6 h, in a 0.1 M solution of N,N'-dimethyl-1,2-ethanediamine adjusted to pH 7.4 with acetic acid. An analysis of the chemical structure of this product revealed that the 5' base was intact, whereas the glycosidic bond at the 3' component was hydrolyzed in the same manner. The strand break was detected for a 30-mer oligonucleotide containing the (6-4) photoproduct upon treatment with the above solution or other pH 7.4 solutions containing biogenic amines, such as spermidine and spermine. In the case of spermidine, the rate constant was calculated to be 1.4 × 10(-8) s(-1) at 37 °C. The strand break occurred even when the oligonucleotide was heated at 90 °C in 0.1 M sodium phosphate (pH 7.0), although this treatment produced several types of 5' fragments. The Dewar valence isomer was inert to this reaction. The product obtained from the (6-4) photoproduct-containing 30-mer was used to investigate the enzymatic processing of the 3' end bearing the damaged base and a phosphate. The ERCC1-XPF complex removed several nucleotides containing the damaged base, in the presence of replication protein A.
Assuntos
Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/farmacologia , DNA/efeitos da radiação , Endonucleases/farmacologia , Raios Ultravioleta , Cromatografia Líquida de Alta Pressão , Proteínas de Ligação a DNA/química , Endonucleases/química , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/farmacologia , FotóliseRESUMO
Two UV-sensitive syndrome patients who have mild photosensitivity without detectable somatic abnormalities lack detectable Cockayne syndrome group B (CSB) protein because of a homozygous null mutation in the CSB gene. In contrast, mutant CSB proteins are produced in CS-B patients with the severe somatic abnormalities of Cockayne syndrome and photosensitivity. It is known that the piggyBac transposable element derived 3 is integrated within the CSB intron 5, and that CSB-piggyBac transposable element derived 3 fusion (CPFP) mRNA is produced by alternative splicing. We found that CPFP or truncated CSB protein derived from CPFP mRNA was stably produced in CS-B patients, and that wild-type CSB, CPFP, and truncated CSB protein interacted with DNA topoisomerase I. We also found that CPFP inhibited repair of a camptothecin-induced topoisomerase I-DNA covalent complex. The inhibition was suppressed by the presence of wild-type CSB, consistent with the autosomal recessive inheritance of Cockayne syndrome. These results suggested that reduced repair of a DNA topoisomerase I-DNA covalent complex because of truncated CSB proteins is involved in the pathogenesis of CS-B.
Assuntos
Enzimas Reparadoras do DNA/fisiologia , Reparo do DNA/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas Mutantes/genética , Linhagem Celular , Linhagem Celular Transformada , DNA/genética , DNA/metabolismo , DNA Topoisomerases Tipo I/genética , Fibroblastos/efeitos da radiação , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Íntrons , Mutação , Proteínas de Ligação a Poli-ADP-Ribose , RNA Mensageiro/genética , Transfecção , Raios UltravioletaRESUMO
Hydroxyl radicals generate a broad range of DNA lesions in living cells. Cyclopurine deoxynucleosides (CPUs) are a biologically significant class of oxidative DNA lesions due to their helical distortion and chemically stability. The CPUs on DNA are substrates for the nucleotide excision repair (NER) but not for base excision repair or direct damage reversal. Moreover, these lesions block DNA and RNA polymerases, resulting in cell death. Here, we describe the chemical synthesis of 5'S and 5'R isomers of 5',8-cyclodeoxyadenosine triphosphate (cdATP) and demonstrate their ability to be incorporated into DNA by replicative DNA polymerases. DNA synthesis assays revealed that the incorporation of the stereoisomeric cdATPs strongly inhibits DNA polymerase reactions. Surprisingly, the two stereoisomers had different mutagenic profiles, since the S isomer of cdATP could be inserted opposite to the dTMP, but the R isomer of cdATP could be inserted opposite to the dCMP. Kinetic analysis revealed that the S isomer of cdATP could be incorporated more efficiently (25.6 µM(-1) min(-1)) than the R isomer (1.13 µM(-1) min(-1)) during DNA synthesis. Previous data showed that the S isomer in DNA blocked DNA synthesis and the exonuclease activity of DNA polymerase and is less efficiently repaired by NER. This indicates that the S isomer has a tendency to accumulate on the genome DNA, and as such, the S isomer of cdATP may be a candidate cytotoxic drug.