Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 12(6): 2108-2113, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163974

RESUMO

Efficient activation of CO2 at low temperature was achieved by reverse water-gas shift via chemical looping (RWGS-CL) by virtue of fast oxygen ion migration in a Cu-In structured oxide, even at lower temperatures. Results show that a novel Cu-In2O3 structured oxide can show a remarkably higher CO2 splitting rate than ever reported. Various analyses revealed that RWGS-CL on Cu-In2O3 is derived from redox between Cu-In2O3 and Cu-In alloy. Key factors for high CO2 splitting rate were fast migration of oxide ions in the alloy and the preferential oxidation of the interface of alloy-In2O3 in the bulk of the particles. The findings reported herein can open up new avenues to achieve effective CO2 conversion at lower temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA