Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 200: 88-96, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28570939

RESUMO

Removal of antibiotic sulfamethoxazole (SMX) by zero-valent iron (ZVI) was examined in the range of pH from 3.0 to 11.0 under oxic and anoxic conditions to clarify mechanisms of SMX removal in acidic, neutral and alkaline solutions. SMX removal was affected by solution pH and related to the speciation of SMX. Under the oxic condition, the maximums of SMX removal efficiency and rate were obtained at pH 3.0. The SMX removal efficiency decreased from 100 to 32% with increasing pH in the acidic solutions (3 â‰¦ pH â‰¦ 5) and increased to 88% in neutral and moderately alkaline solutions (6 â‰¦ pH â‰¦ 10). In highly alkaline solution (pH = 11), the SMX removal was significantly suppressed due to the formation of passive layer on ZVI surface. The removal rate of SMX under the oxic condition significantly declined with increasing pH. Under the anoxic condition, SMX removal was completed within 300 min in the acidic solutions and remained to less than 70% after 300 min in neutral and moderately alkaline solutions. For pH â‰§ 10, no SMX removal practically occurred. The removal rate of SMX under the anoxic condition approximately remained constant in the acidic solution and largely decreased in neutral and moderately alkaline solutions. SMX removal by ZVI was found to be dominated by the reductive degradation and adsorption under both the oxic and anoxic conditions. It was concluded that ZVI has the potential for effective removal of antibiotic SMX under the oxic and anoxic conditions. A kinetic model could reasonably simulate the dynamic profiles of SMX removal.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Antibacterianos , Concentração de Íons de Hidrogênio , Ferro , Purificação da Água
2.
J Environ Manage ; 183(Pt 3): 478-487, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27623374

RESUMO

The decolorization and total organic carbon (TOC) removal of dark brown colored coffee effluent by zero-valent iron (ZVI) have been systematically examined with solution pH of 3.0, 4.0, 6.0 and 8.0 under oxic and anoxic conditions. The optimal decolorization and TOC removal were obtained at pH 8.0 with oxic condition. The maximum efficiencies of decolorization and TOC removal were 92.6 and 60.2%, respectively. ZVI presented potential properties for pollutant removal at nearly neutral pH because of its core-shell structure in which shell or iron oxide/hydroxide layer on ZVI surface dominated the decolorization and TOC removal of coffee effluent. To elucidate the contribution of the core-shell structure to removals of color and TOC at the optimal condition, the characterization of ZVI surface by scanning electron microscopy (SEM) with an energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) was conducted. It was confirmed that the core-shell structure was formed and the shell on ZVI particulate surface and the precipitates formed during the course of ZVI treatment consisted of iron oxides and hydroxides. They were significantly responsible for decolorization and TOC removal of coffee effluent via adsorption to shell on ZVI surface and inclusion into the precipitates rather than the oxidative degradation by OH radicals and the reduction by emitted electrons. The presence of dissolved oxygen (DO) enhanced the formation of the core-shell structure and as a result improved the efficiency of ZVI treatment for the removal of colored components in coffee effluents. ZVI was found to be an efficient material toward the treatment of coffee effluents.


Assuntos
Café/química , Indústria de Processamento de Alimentos/métodos , Eliminação de Resíduos Líquidos/métodos , Adsorção , Carbono/química , Cor , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Ferro/química , Ponto Isoelétrico , Microscopia Eletrônica de Varredura , Oxirredução , Oxigênio/química , Espectroscopia Fotoeletrônica , Eliminação de Resíduos Líquidos/instrumentação , Poluentes Químicos da Água/química , Difração de Raios X
3.
Sci Rep ; 13(1): 18480, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898707

RESUMO

It was previously shown that spherical particles are self-assembled by compounds composed of C60-(6,6)CNB-C60, where CNB stands for "carbon nanobelt", by mixing two individual solutions of C60 and (6,6)CNB molecules dissolved in 1,2-dichlorobenzene at room temperature. The particles are monodisperse in water thanks to their high absolute value of the zeta potential in water. In this report, we investigate the effect of thermal treatment of the particles on some changes in the physical properties and structures. We find that the particles become electrically conductive after thermal treatment at 600 °C for 1 h. We suppose that the change in the electrical characteristics might have been caused by the structural change of (6,6)CNBs into opened-up ribbons composed of fused benzene rings, which construct networks supported by C60 molecules in the particles, judging by the change in the absorption and mass spectra of the particles after thermal treatment and analysis of a possible change in the structure of C60-(6,6)CNB-C60 based on quantum chemical calculations employing the PM6 method, with which it is known that nanostructures such as carbon nanotubes (CNTs) and (6,6)CNBs can be correctly estimated.

4.
Sci Rep ; 12(1): 15207, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076008

RESUMO

A carbon nanobelt (CNB) is a loop of fused benzene rings and a C60 molecule is a football shaped fullerene composed of 60 carbon atoms. In this study, we synthesize uniform spherical particles composed of (6,6)CNBs and C60 molecules in 1,2-dichlorobenzene at room temperature via bottom-up self-assembly, setting the molar concentrations of (6,6)CNBs and C60 molecules at appropriate values, and find that the particles are monodisperse even in water. The present room temperature synthetic methodology may well be applied to the creation of nano/micro structures/materials using basic carbon nano units such as cycloparaphenylene (CPP, carbon nanorings) and fullerenes; e.g., C60, C70 and C59N.

5.
Sci Rep ; 10(1): 12333, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704038

RESUMO

Herein, we present the rapid synthesis of mono-dispersed carbon quantum dots (C-QDs) via a single-step microwave plasma-enhanced decomposition (MPED) process. Highly-crystalline C-QDs were synthesized in a matter of 5 min using the fenugreek seeds as a sustainable carbon source. It is the first report, to the best of our knowledge, where C-QDs were synthesized using MPED via natural carbon precursor. Synthesis of C-QDs requires no external temperature other than hydrogen (H2) plasma. Plasma containing the high-energy electrons and activated hydrogen ions predominantly provide the required energy directly into the reaction volume, thus maximizing the atom economy. C-QDs shows excellent Photoluminescence (PL) activity along with the dual-mode of excitation-dependent PL emission (blue and redshift). We investigate the reason behind the dual-mode of excitation-dependent PL. To prove the efficacy of the MPED process, C-QDs were also derived from fenugreek seeds using the traditional synthesis process, highlighting their respective size-distribution, crystallinity, quantum yield, and PL. Notably, C-QDs synthesis via MPED was 97.2% faster than the traditional thermal decomposition process. To the best of our knowledge, the present methodology to synthesize C-QDs via natural source employing MPED is three times faster and far more energy-efficient than reported so far. Additionally, the application of C-QDs to produce the florescent lysozyme protein crystals "hybrid bio-nano crystals" is also discussed. Such a guest-host strategy can be exploited to develop diverse and complex "bio-nano systems". The florescent lysozyme protein crystals could provide a platform for the development of novel next-generation polychrome luminescent crystals.

6.
Chemosphere ; 200: 542-553, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29501891

RESUMO

Zero-valent iron (ZVI) being an inexpensive and eco-friendly catalyst has drawn great attention in removal of heavy metals from wastewaters. However, quantitative understandings of ZVI processes are significantly deficient. To compensate for the lack of quantitative analyses of removal of heavy metals by ZVI, a phenomenological reaction kinetic model was newly developed for removal of Cu chosen as a typical heavy metal from acidic aqueous solutions by ZVI. The novel kinetic model is based on the adsorption of Cu2+ and H+ onto ZVI surface and subsequent Cu2+ reduction on ZVI surface and Fe2+ elution from ZVI. Batch experiments were conducted to elucidate effects of pH and Cu loading on Cu removal by ZVI in acidic aqueous solutions and to validate the proposed phenomenological reaction kinetic model. The quick and complete removals of 1.57 mM Cu were established in the rage of pH 2-5. Although the maximum Cu removal rate was obtained at pH 4, effects of pH were insignificant. In the range of Cu loading from 0.393 to 4.72 mM, almost complete Cu removals were obtained at pH 4 within 35 min. The changes in concentrations of Cu2+, Fe2+, H+ and dissolved oxygen were strongly linked with each other. They could be successfully simulated by the proposed model with the average correlation coefficient of 0.979. The capability of the phenomenological reaction kinetic model for dynamic simulation of Cu removal by ZVI under acidic conditions was confirmed.


Assuntos
Cobre/química , Ferro/química , Poluentes Químicos da Água/química , Adsorção , Cinética , Oxigênio/química , Águas Residuárias/química , Purificação da Água
7.
Heliyon ; 3(8): e00386, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28840196

RESUMO

The ratio of the surface area to the volume of materials increases in inverse proportion to their size and therefore the surface area of nanostructures and nanomaterials is extremely large compared to that of macroscopic materials of the same volume, thanks to which it is supposed that chemical and biochemical reactions may be greatly enhanced and target molecules and cells may be efficiently trapped on the surface of nanomaterials. It is well known that C60 molecules are stable both physically and chemically and the affinity of C60 molecules with biomolecules is rather high. Here, we synthesise fibres composed of C60 and sulphur and immobilise the surface of the fibres with the primary antibody; i.e., epithelial cell adhesion molecules (anti-EpCAM), to trap target cells. The primary antibody is evenly immobilised on the fibres confirmed by a fluorescent secondary antibody attached to the primary one and then TE2 esophageal and DLD-1 colon cancer cells are successfully trapped by the primary antibody immobilised on the fibres thanks to its high affinity with TE2 and DLD-1 cells, whereas few IM9 B lymphoblast cells are captured on the fibres since the affinity of the primary antibody with IM9 cells is extremely low. Furthermore, those cells trapped by the primary antibody immobilised on the fibres proliferate faster than native cells thanks to the primary antibody acting as a growth factor. The present result suggests that different types of cells can be trapped and grown on nano fibres by immobilising appropriate antibody molecules on the surface of the fibres. Even an extremely small number of cells in sample fluids may be analysed and characterised for the detection of diseases such as cancer in the early stage by trapping and proliferating target cells on the fibres.

8.
Chemosphere ; 144: 1738-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26519806

RESUMO

The iron elution and dissolved oxygen (DO) consumption in organic pollutant removal by nanoscale zero-valent iron (nZVI) was examined in the range of solution pH from 3.0 to 9.0. Their behaviors were linked with the removal of organic pollutant through the dissolution of iron and the formation of iron oxide/hydroxide layer affected strongly by solution pH and DO. As an example of organic pollutants, azo-dye Orange II was chosen in this study. The chemical composition analyses before and after reaction confirmed the corrosion of nZVI into ions, the formation of iron oxide/hydroxide layer on nZVI surface and the adsorption of the pollutant and its intermediates. The complete decolorization of Orange II with nZVI was accomplished very quickly. On the other hand, the total organic carbon (TOC) removal was considerably slow and the maximum TOC removal was around 40% obtained at pH 9.0. The reductive cleavage of azo-bond by emitted electrons more readily took place as compared with the cleavage of aromatic rings of Orange II leading to the degradation to smaller molecules and subsequently the mineralization. A reaction kinetic model based on the Langmuir-Hinshelwood/Eley-Rideal approach was developed to elucidate mechanisms for organic pollutant removal controlled by the formation of iron oxide/hydroxide layer, the progress of which could be characterized by considering the dynamic concentration changes in Fe(2+) and DO. The dynamic profiles of Orange II removal linked with Fe(2+) and DO could be reasonably simulated in the range of pH from 3.0 to 9.0.


Assuntos
Compostos Azo/química , Benzenossulfonatos/química , Compostos Férricos/química , Compostos Ferrosos/química , Ferro/química , Oxigênio/química , Poluentes Químicos da Água/química , Adsorção , Compostos Azo/isolamento & purificação , Benzenossulfonatos/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Solubilidade , Soluções , Propriedades de Superfície , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação
9.
Nanoscale Res Lett ; 6(1): 80, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21711582

RESUMO

We carry out two experiments: (1) the formation of clusters composed of C60 molecules via self-assembly and (2) the reinforcement of the clusters. Firstly, clusters such as fibres and helices composed of C60 molecules are produced via self-assembly in supercritical carbon dioxide. However, C60 molecules are so weakly bonded to each other in the clusters that the clusters are broken by the irradiation of electron beams during scanning electron microscope observation. Secondly, UV photons are irradiated inside a chamber in which air is filled at 1 atm and the above clusters are placed, and it was found that the clusters are reinforced; that is, they are not broken by electron beams any more. C60 molecules located at the surface of the clusters are oxidised, i.e. C60On molecules, where n = 1, 2, 3 and 4, are produced according to time-of-flight mass spectroscopy. It is supposed that oxidised C60 molecules at the surface of the clusters may have an important role for the reinforcement, but the actual mechanism of the reinforcement of the clusters has not yet been clearly understood and therefore is an open question.

10.
Nanoscale Res Lett ; 6(1): 128, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21711636

RESUMO

In this study, complexes composed of poly-l-tyrosine (pLT) and single-walled carbon nanotubes (SWCNTs) were produced and the dispersibility of the pLT/SWCNT complexes in water by measuring the ζ potential of the complexes and the turbidity of the solution were investigated. It is found that the absolute value of the ζ potential of the pLT/SWCNT complexes is as high as that of SWCNTs modified with double-stranded DNA (dsDNA) and that the complexes remain stably dispersed in the water at least for two weeks. Thermogravimetry analysis (TGA) and visualization of the surface structures of pLT/SWCNT complexes using an atomic force microscope (AFM) were also carried out.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA