Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Accid Anal Prev ; 181: 106927, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36584619

RESUMO

The goal of this on the road driving study was to investigate how drivers adapt their behavior when driving with conditional vehicle automation (SAE L3) on different occasions. Specifically, we focused on changes in how fast drivers took over control from automation and how their gaze off the road changed over time. On each of three consecutive days, 21 participants drove for 50 min, in a conditionally automated vehicle (Wizard of Oz methodology), on a typical German commuting highway. Over these rides the take-over behavior and gaze behavior were analyzed. The data show that drivers' reactions to non-critical, system initiated, take-overs took about 5.62 s and did not change within individual rides, but on average became 0.72 s faster over the three rides. After these self-paced take-over requests a final urgent take-over request was issued at the end of the third ride. In this scenario participants took over rapidly with an average of 5.28 s. This urgent take-over time was not found to be different from the self-paced take-over requests in the same ride. Regarding gaze behavior, participants' overall longest glance off the road and the percentage of time looked off the road increased within each ride, but stayed stable over the three rides. Taken together, our results suggest that drivers regularly leave the loop by gazing off the road, but multiple exposures to take-over situations in automated driving allow drivers to come back into loop faster.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Humanos , Acidentes de Trânsito/prevenção & controle , Tempo de Reação , Automação , Veículos Autônomos
2.
Accid Anal Prev ; 162: 106397, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34563644

RESUMO

In the current study we investigated if drivers of conditionally automated vehicles can be kept in the loop through lane change maneuvers. More specifically, we examined whether involving drivers in lane-changes during a conditionally automated ride can influence critical take-over behavior and keep drivers' gaze on the road. In a repeated measures driving simulator study (n = 85), drivers drove the same route three times, each trial containing four lane changes that were all either (1) automated, (2) semi-automated or (3) manual. Each ride ended with a critical take-over situation that could be solved by braking and/or steering. Critical take-over reactions were analyzed with a linear mixed model and parametric accelerated failure time survival analysis. As expected, semi-automated and manual lane changes throughout the ride led to 13.5% and 17.0% faster maximum deceleration compared to automated lane changes. Additionally, semi-automated and manual lane changes improved the quality of the take-over by significantly decreasing standard deviation of the steering wheel angle. Unexpectedly, drivers in the semi-automated condition were slowest to start the braking maneuver. This may have been caused by the drivers' confusion as to how the semi-automated system would react. Additionally, the percentage gaze off-the-road was significantly decreased by the semi-automated (6.0%) and manual (6.6%) lane changes. Taken together, the results suggest that semi-automated and manual transitions may be an alarm-free instrument which developers could use to help maintain drivers' perception-action loop and improve automated driving safety.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Acidentes de Trânsito/prevenção & controle , Automação , Humanos , Equipamentos de Proteção , Tempo de Reação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA