Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Genet ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38876772

RESUMO

Homozygous VPS50 variants have been previously described in two unrelated patients with a neurodevelopmental disorder with microcephaly, seizures and neonatal cholestasis. VPS50 encodes a subunit that is unique to the heterotetrameric endosome-associated recycling protein (EARP) complex. The other subunits of the EARP complex, such as VPS51, VPS52 and VPS53, are also shared by the Golgi-associated retrograde protein complex. We report on an 18-month-old female patient with biallelic VPS50 variants. She carried a paternally inherited heterozygous nonsense c.13A>T; p.(Lys5*) variant. By long-read genome sequencing, we characterised a structural variant with a 4.3 Mb inversion flanked by deletions at both breakpoints on the maternal allele. The ~428 kb deletion at the telomeric inversion breakpoint encompasses the entire VPS50 gene. We demonstrated a deficiency of VPS50 in patient-derived fibroblasts, confirming the loss-of-function nature of both VPS50 variants. VPS53 and VPS52 protein levels were significantly reduced and absent, respectively, in fibroblasts of the patient. These data show that VPS50 and/or EARP deficiency and the associated functional defects underlie the phenotype in patients with VPS50 pathogenic variants. The VPS50-related core phenotype comprises severe developmental delay, postnatal microcephaly, hypoplastic corpus callosum, neonatal low gamma-glutamyl transpeptidase cholestasis and failure to thrive. The disease is potentially fatal in early childhood.

2.
Genet Med ; 26(7): 101143, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641995

RESUMO

PURPOSE: Neurodevelopmental disorders exhibit clinical and genetic heterogeneity, ergo manifest dysfunction in components of diverse cellular pathways; the precise pathomechanism for the majority remains elusive. METHODS: We studied 5 affected individuals from 3 unrelated families manifesting global developmental delay, postnatal microcephaly, and hypotonia. We used exome sequencing and prioritized variants that were subsequently characterized using immunofluorescence, immunoblotting, pulldown assays, and RNA sequencing. RESULTS: We identified biallelic variants in ZFTRAF1, encoding a protein of yet unknown function. Four affected individuals from 2 unrelated families segregated 2 homozygous frameshift variants in ZFTRAF1, whereas, in the third family, an intronic splice site variant was detected. We investigated ZFTRAF1 at the cellular level and signified it as a nucleocytoplasmic protein in different human cell lines. ZFTRAF1 was completely absent in the fibroblasts of 2 affected individuals. We also identified 110 interacting proteins enriched in mRNA processing and autophagy-related pathways. Based on profiling of autophagy markers, patient-derived fibroblasts show irregularities in the protein degradation process. CONCLUSION: Thus, our findings suggest that biallelic variants of ZFTRAF1 cause a severe neurodevelopmental disorder.


Assuntos
Mutação com Perda de Função , Microcefalia , Hipotonia Muscular , Transtornos do Neurodesenvolvimento , Linhagem , Humanos , Microcefalia/genética , Microcefalia/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Masculino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Feminino , Pré-Escolar , Mutação com Perda de Função/genética , Alelos , Criança , Lactente , Sequenciamento do Exoma , Fibroblastos/metabolismo , Fibroblastos/patologia , Autofagia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA