Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 600(10): 2429-2460, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35389519

RESUMO

De novo missense variants in the KCNQ2 gene encoding the Kv7.2 subunit of voltage-gated potassium Kv7/M channels are the main cause of developmental and epileptic encephalopathy with neonatal onset. Although seizures usually resolve during development, cognitive/motor deficits persist. To gain a better understanding of the cellular mechanisms underlying network dysfunction and their progression over time, we investigated in vivo, using local field potential recordings of freely moving animals, and ex vivo in layers II/III and V of motor cortical slices, using patch-clamp recordings, the electrophysiological properties of pyramidal cells from a heterozygous knock-in mouse model carrying the Kv7.2 p.T274M pathogenic variant during neonatal, postweaning and juvenile developmental stages. We found that knock-in mice displayed spontaneous seizures preferentially at postweaning rather than at juvenile stages. At the cellular level, the variant led to a reduction in M ​​current density/conductance and to neuronal hyperexcitability. These alterations were observed during the neonatal period in pyramidal cells of layers II/III and during the postweaning stage in pyramidal cells of layer V. Moreover, there was an increase in the frequency of spontaneous network-driven events mediated by GABA receptors, suggesting that the excitability of interneurons was also increased. However, all these alterations were no longer observed in layers II/III and V of juvenile mice. Thus, our data indicate that the action of the variant is regulated developmentally. This raises the possibility that the age-related seizure remission observed in KCNQ2-related developmental and epileptic encephalopathy patients results from a time-limited alteration of Kv7 channel activity and neuronal excitability. KEY POINTS: The electrophysiological impact of the pathogenic c.821C>T mutation of the KCNQ2 gene (p.T274M variant in Kv7.2 subunit) related to developmental and epileptic encephalopathy has been analysed both in vivo and ex vivo in layers II/III and V of motor cortical slices from a knock-in mouse model during development at neonatal, postweaning and juvenile stages. M current density and conductance are decreased and the excitability of layer II/III pyramidal cells is increased in slices from neonatal and postweaning knock-in mice but not from juvenile knock-in mice. M current and excitability of layer V pyramidal cells are impacted in knock-in mice only at the postweaning stage. Spontaneous GABAergic network-driven events can be recorded until the postweaning stage, and their frequency is increased in layers II/III of the knock-in mice. Knock-in mice display spontaneous seizures preferentially at postweaning rather than at juvenile stages.


Assuntos
Encefalopatias , Canal de Potássio KCNQ2 , Convulsões , Animais , Modelos Animais de Doenças , Humanos , Canal de Potássio KCNQ2/genética , Camundongos , Proteínas do Tecido Nervoso , Células Piramidais
2.
MethodsX ; 11: 102290, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37577167

RESUMO

QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample processing methods have previously been applied to a range of compounds and matrices. This study presents a modified QuEChERS sample processing method that was validated and employed for 24 per- and polyfluoroalkyl substances (PFAS) for various biological matrices. PFAS are a group of synthetic chemicals that have attracted substantial attention as some compounds are acknowledged to be persistent, toxic, and bioaccumulative. It is crucial to determine PFAS in diverse environmental matrices. Currently, limited sample processing methods for PFAS in biological matrices are available and the majority only focus on a few compounds such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). Thus, there is a demand to develop a sample processing method which is effective for many commonly tested PFAS compounds in environmental biological samples. In this study, the detailed sample processing procedures and method performance are described. The highlights of this method are: •The extraction solvent and salts were adjusted for PFAS extraction from environmental biological matrices.•The modified QuEChERS method is effective for extraction and cleanup from a variety of matrices including algae, plants, invertebrates, amphibians, and fish.

3.
Sci Total Environ ; 866: 161208, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36581279

RESUMO

Per- and polyfluoroalkyl substances (PFAS) in aquatic environments have caused global concern due to their persistence, toxicity, and potential bioaccumulation of some compounds. As an important compartment of the aquatic ecosystem, sediment properties impact PFAS partitioning between aqueous and solid phases, but little is known about the influence of sediment organic carbon content on PFAS bioaccumulation in benthic organisms. In this study, three freshwater benthic macroinvertebrates - worms (Lumbriculus variegatus), mussels (Elliptio complanata) and snails (Physella acuta) - were exposed for 28 days to PFAS spiked synthetic sediment equilibrated with a synthetic surface water. Using microcosms, sediment organic carbon content - 2%, 5% and 8% - was manipulated to assess its impact on PFAS bioaccumulation. Worms were found to have substantially greater PFAS bioaccumulation compared to mussels and snails. The bioaccumulation factors (BAFs) and biota sediment accumulation factors (BSAFs) in worms were both one to two magnitudes higher than in mussels and snails, likely due to different habitat-specific uptake pathways and elimination capacities among species. In these experiments, increasing sediment organic carbon content decreased the bioaccumulation of PFAS to benthic macroinvertebrates. In worms, sediment organic carbon content was hypothesized to impact PFAS bioaccumulation by affecting PFAS partitioning and sediment ingestion rate. Notably, the BSAF values of 8:2 fluorotelomer sulfonic acid (FTS) were the largest among 14 PFAS for all species, suggesting that the benthic macroinvertebrates probably have different metabolic mechanisms for fluorotelomer sulfonic acids compared to fish evaluated in published literature. Understanding the impact of species and sediment organic carbon on PFAS bioaccumulation is key to developing environmental quality guidelines and evaluating potential ecological risks to higher trophic level species.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Bioacumulação , Carbono , Ecossistema , Poluentes Químicos da Água/análise , Água Doce , Sedimentos Geológicos
4.
Environ Pollut ; 331(Pt 2): 121938, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37263566

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have extensively contaminated freshwater aquatic ecosystems where they can be transported in water and partition to sediment and biota. In this paper, three freshwater benthic macroinvertebrates with different foraging modes were exposed to environmentally relevant concentrations of eight perfluoroalkyl carboxylates (PFCA), three perfluoroalkyl sulfonates (PFSA), and three fluorotelomer sulfonates (FTS) at varying divalent cation concentrations of magnesium (Mg2+) and calcium (Ca2+). Divalent cations can impact PFAS partitioning to solids, especially to sediments, at higher concentrations. Sediment dwelling worms (Lumbriculus variegatus), epibenthic grazing snails (Physella acuta), and sediment-dwelling filter-feeding bivalves (Elliptio complanata) were selected due to their unique foraging modes. Microcosms were composed of synthetic sediment, culture water, macroinvertebrates, and PFAS and consisted of a 28-day exposure period. L. variegatus had significantly higher PFAS bioaccumulation than P. acuta and E. complanata, likely due to higher levels of interactions with and ingestion of the contaminated sediment. "High Mg2+" (7.5 mM Mg2+) and "High Ca2+" (7.5 mM Ca2+) conditions generally had statistically higher bioaccumulation factors (BAF) than the "Reference Condition" (0.2 mM Ca2+ and 0.2 mM Mg2+) for PFAS with perfluorinated chain lengths greater than eight carbons. Long-chain PFAS dominated the PFAS profiles of the macroinvertebrates for all groups of compounds studied (PFCA, PFSA, and FTS). These results indicate that the study organism has the greatest impact on bioaccumulation, although divalent cation concentration had observable impacts between organisms depending on the environmental conditions. Elevated cation concentrations in the microcosms led to significantly greater bioaccumulation in the test organisms compared to the experimental reference conditions for long-chain PFAS.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Cátions Bivalentes , Bioacumulação , Ecossistema , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Água Doce , Alcanossulfonatos , Água , Ácidos Carboxílicos
5.
Neuron ; 111(6): 888-902.e8, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608692

RESUMO

The adult CA1 region of the hippocampus produces coordinated neuronal dynamics with minimal reliance on its extrinsic inputs. By contrast, neonatal CA1 is tightly linked to externally generated sensorimotor activity, but the circuit mechanisms underlying early synchronous activity in CA1 remain unclear. Here, using a combination of in vivo and ex vivo circuit mapping, calcium imaging, and electrophysiological recordings in mouse pups, we show that early dynamics in the ventro-intermediate CA1 are under the mixed influence of entorhinal (EC) and thalamic (VMT) inputs. Both VMT and EC can drive internally generated synchronous events ex vivo. However, movement-related population bursts detected in vivo are exclusively driven by the EC. These differential effects on synchrony reflect the different intrahippocampal targets of these inputs. Hence, cortical and subcortical pathways act differently on the neonatal CA1, implying distinct contributions to the development of the hippocampal microcircuit and related cognitive maps.


Assuntos
Hipocampo , Neurônios , Animais , Camundongos , Hipocampo/fisiologia , Neurônios/fisiologia , Tálamo , Córtex Entorrinal/fisiologia , Região CA1 Hipocampal/fisiologia
6.
Sci Total Environ ; 822: 153561, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35101505

RESUMO

Due to the bioaccumulative behavior, toxicity, and recalcitrance to degradation, per- and polyfluoroalkyl substances (PFAS) are a focus for many researchers investigating freshwater aquatic ecosystems. PFAS are a diverse set of chemicals that accumulate and transport quite differently in the environment depending on the length of their fluoroalkyl chains and their functional groups. This diversity in PFAS chemical characteristics combined with varying environmental factors also impact the bioaccumulation of these compounds in different organisms. In this review, we evaluate environmental factors (such as organic carbon, proteins, lipids, and dissolved cations) as well as PFAS characteristics (head group, chain-length, and concentration) that contribute to the significant variation seen in the literature of bioaccumulation metrics reported for organisms in aquatic ecosystems. Of the factors evaluated, it was found that PFAS concentration, dissolved organic matter, sediment organic matter, and biotransformation of precursor PFAS tended to significantly impact reported bioaccumulation metrics the most. Based on this review, it is highly suggested that future studies provide sufficient details of important environmental factors, specific organism traits/ behavior, and PFAS concentrations/compounds when reporting on bioaccumulation metrics to further fill data gaps and improve our understanding of PFAS in aquatic ecosystems.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Bioacumulação , Ecossistema , Fluorocarbonos/análise , Água Doce , Poluentes Químicos da Água/análise
7.
Elife ; 112022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35856497

RESUMO

Early electrophysiological brain oscillations recorded in preterm babies and newborn rodents are initially mostly driven by bottom-up sensorimotor activity and only later can detach from external inputs. This is a hallmark of most developing brain areas, including the hippocampus, which, in the adult brain, functions in integrating external inputs onto internal dynamics. Such developmental disengagement from external inputs is likely a fundamental step for the proper development of cognitive internal models. Despite its importance, the developmental timeline and circuit basis for this disengagement remain unknown. To address this issue, we have investigated the daily evolution of CA1 dynamics and underlying circuits during the first two postnatal weeks of mouse development using two-photon calcium imaging in non-anesthetized pups. We show that the first postnatal week ends with an abrupt shift in the representation of self-motion in CA1. Indeed, most CA1 pyramidal cells switch from activated to inhibited by self-generated movements at the end of the first postnatal week, whereas the majority of GABAergic neurons remain positively modulated throughout this period. This rapid switch occurs within 2 days and follows the rapid anatomical and functional surge of local somatic GABAergic innervation. The observed change in dynamics is consistent with a two-population model undergoing a strengthening of inhibition. We propose that this abrupt developmental transition inaugurates the emergence of internal hippocampal dynamics.


Assuntos
Hipocampo , Células Piramidais , Animais , Animais Recém-Nascidos , Hipocampo/fisiologia , Camundongos , Células Piramidais/fisiologia
8.
Sci Total Environ ; 769: 144324, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482551

RESUMO

Meeting ecological and water quality standards in lotic ecosystems is often failed due to multiple stressors. However, disentangling stressor effects and identifying relevant stressor-effect-relationships in complex environmental settings remain major challenges. By combining state-of-the-art methods from ecotoxicology and aquatic ecosystem analysis, we aimed here to disentangle the effects of multiple chemical and non-chemical stressors along a longitudinal land use gradient in a third-order river in Germany. We distinguished and evaluated four dominant stressor categories along this gradient: (1) Hydromorphological alterations: Flow diversity and substrate diversity correlated with the EU-Water Framework Directive based indicators for the quality element macroinvertebrates, which deteriorated at the transition from near-natural reference sites to urban sites. (2) Elevated nutrient levels and eutrophication: Low to moderate nutrient concentrations together with complete canopy cover at the reference sites correlated with low densities of benthic algae (biofilms). We found no more systematic relation of algal density with nutrient concentrations at the downstream sites, suggesting that limiting concentrations are exceeded already at moderate nutrient concentrations and reduced shading by riparian vegetation. (3) Elevated organic matter levels: Wastewater treatment plants (WWTP) and stormwater drainage systems were the primary sources of bioavailable dissolved organic carbon. Consequently, planktonic bacterial production and especially extracellular enzyme activity increased downstream of those effluents showing local peaks. (4) Micropollutants and toxicity-related stress: WWTPs were the predominant source of toxic stress, resulting in a rapid increase of the toxicity for invertebrates and algae with only one order of magnitude below the acute toxic levels. This toxicity correlates negatively with the contribution of invertebrate species being sensitive towards pesticides (SPEARpesticides index), probably contributing to the loss of biodiversity recorded in response to WWTP effluents. Our longitudinal approach highlights the potential of coordinated community efforts in supplementing established monitoring methods to tackle the complex phenomenon of multiple stress.

9.
Sci Total Environ ; 709: 136075, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31887527

RESUMO

Biogeochemical gradients in streambeds are steep and can vary over short distances often making adequate characterisation of sediment biogeochemical processes challenging. This paper provides an overview and comparison of streambed pore-water sampling methods, highlighting their capacity to address gaps in our understanding of streambed biogeochemical processes. This work reviews and critiques available pore-water sampling techniques to characterise streambed biogeochemical conditions, including their characteristic spatial and temporal resolutions, and associated advantages and limitations. A field study comparing three commonly-used pore-water sampling techniques (multilevel mini-piezometers, miniature drivepoint samplers and diffusive equilibrium in thin-film gels) was conducted to assess differences in observed nitrate and ammonium concentration profiles. Pore-water nitrate concentrations did not differ significantly between sampling methods (p-value = 0.54) with mean concentrations of 2.53, 4.08 and 4.02 mg l-1 observed with the multilevel mini-piezometers, miniature drivepoint samplers and diffusive equilibrium in thin-film gel samplers, respectively. Pore-water ammonium concentrations, however, were significantly higher in pore-water extracted by multilevel mini-piezometers (3.83 mg l-1) and significantly lower where sampled with miniature drivepoint samplers (1.05 mg l-1, p-values <0.01). Differences in observed pore-water ammonium concentration profiles between active (suction: multilevel mini-piezometers) and passive (equilibrium; diffusive equilibrium in thin-film gels) samplers were further explored under laboratory conditions. Measured pore-water ammonium concentrations were significantly greater when sampled by diffusive equilibrium in thin-film gels than with multilevel mini-piezometers (all p-values ≤0.02). The findings of this study have critical implications for the interpretation of field-based research on hyporheic zone biogeochemical cycling and highlight the need for more systematic testing of sampling protocols. For the first time, the impact of different active and passive pore-water sampling methods is addressed systematically here, highlighting to what degree the choice of pore-water sampling methods affects research outcomes, with relevance for the interpretation of previously published work as well as future studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA