RESUMO
In this study, graphene flakes were obtained using an electrolytic method and characterized using X-ray diffraction (XRD), Raman and FTIR spectroscopy, scanning and transmission electron microscopy (SEM/TEM). Graphene-based composites with varying concentrations of 0.5%, 1% and 3% by weight were prepared with acrylic paint, enamel and varnish matrices. The mechanical properties were evaluated using micro-hardness testing, while wettability and antimicrobial activity against three pathogens (Staphylococcus aureus 33591, Pseudomonas aeruginosa 15442, Candida albicans 10231) were also examined. The results indicate that the addition of graphene flakes significantly enhances both the mechanical and antimicrobial properties of the coatings.
Assuntos
Grafite , Pintura , Candida albicans , Eletrólise , Grafite/química , Grafite/farmacologia , Anti-Infecciosos , Staphylococcus aureus , Pseudomonas aeruginosaRESUMO
The laser-based powder bed fusion of polymers (PBF-LB/P) process often utilizes a blend of powders with varying degrees of degradation. Specifically, for polyamide 12, the traditional reuse schema involves mixing post-processed powder with virgin powder at a predetermined ratio before reintroducing it to the process. Given that only about 15% of the powder is utilized in part production, and powders are refreshed in equal proportions, there arises a challenge with the incremental accumulation of material across build cycles. To mitigate the consumption of fresh powder relative to the actual material usage, this study introduces the incorporation of recycled material into the PBF-LB/P process. This new powder reuse schema is presented for the first time, focusing on the laser sintering process. The characteristics of the recycled powder were evaluated through scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, particle size distribution, and dynamic powder flowability assessments. The findings reveal that waste powders can be effectively reused in PBF-LB/P to produce components with satisfactory mechanical properties, porosity levels, dimensional accuracy, and surface quality.
Assuntos
Lasers , Polímeros , Pós , Reciclagem , Reciclagem/métodos , Polímeros/química , Tamanho da Partícula , Microscopia Eletrônica de Varredura , Difração de Raios X , Varredura Diferencial de Calorimetria , Gerenciamento de Resíduos/métodosRESUMO
PURPOSE: Bacterial colonization of the denuded bone in bisphosphonate-related osteonecrosis of the jaw suggests that bisphosphonates increase bacterial adhesion and biofilm formation. This study evaluated the adhesion of gram-positive and gram-negative bacteria on hydroxyapatite coated with pamidronate, one of the most potent bisphosphonates. MATERIALS AND METHODS: Twenty-five Staphylococcus aureus and 25 Pseudomonas aeruginosa strains were cultured on pamidronate-coated and uncoated hydroxyapatite discs. After incubation, nonadherent bacteria were removed by rinsing and centrifugation. Formation of a biofilm was confirmed by confocal laser 3-dimensional and scanning electron microscopy. The number of bacterial colonies was counted using quantitative cultures and mean numbers were compared using the Mann-Whitney rank sum test (statistical significance defined as P ≤ .05). The Hartree-Fock method was used for the calculation of electron interactions between hydroxyapatite ions and pamidronate. RESULTS: Fold increases in the number of colonies formed by S aureus and P aeruginosa in the presence of pamidronate compared with controls were 7.19 ± 4.127 and 2.87 ± 0.622, respectively. Hartree-Fock analysis showed that the reactive NH3(+) group of pamidronate may act as a steric factor, facilitating anchoring of bacteria to the hydroxyapatite surface. Alternatively, the NH3(+) group may attract bacteria by direct electrostatic interaction. CONCLUSIONS: Increased bacterial adhesion in the presence of bisphosphonates can promote osteomyelitis in patients with bisphosphonate-related osteonecrosis of the jaw. There may be increased infection rates when bisphosphonates are used for stabilization of prostheses in joint arthroplasty and in osteotomies and open fractures in patients treated with bisphosphonates.
Assuntos
Aderência Bacteriana/efeitos dos fármacos , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/microbiologia , Conservadores da Densidade Óssea/farmacologia , Difosfonatos/farmacologia , Durapatita , Biofilmes/efeitos dos fármacos , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Contagem de Colônia Microbiana , Tomografia com Microscopia Eletrônica , Humanos , Modelos Moleculares , Pamidronato , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Estatísticas não Paramétricas , Microtomografia por Raio-XRESUMO
Despite the significant potential advantages of processing Ti-5Al-5Mo-5V-1Cr-1Fe alloy (Ti-55511) using Electron Beam Melting (PBF-EB/M), when compared to conventional manufacturing technologies, the resulting internal defects are an important characteristic of such additive technologies and can highly decrease mechanical properties. One of the most dangerous defects formed during metal additive manufacturing processes are material discontinuities such as a lack of fusion. Defects of this type, due to their "flat" nature, are difficult to characterize. For cycle-loaded specimens, where the loading force acts perpendicular to the lack-of-fusion plane, defects of this type can significantly reduce fatigue properties. This paper presents the results of research aimed at improving the fatigue properties of Ti55511 alloy by reducing the influence of the lack-of-fusion defect on fatigue damage. The static and fatigue properties of specimens in the as-built state, as well as after hot isostatic pressing (HIP) treatment, were analyzed. The effect of HIP on both the reduction of pores and the degree of sphericity when using the X-ray computed tomography (XCT) system was presented. The change in the microstructure after HIP was analyzed in terms of the change in the size of individual phases, as well as the change in the phase ratio. This paper also contains a fractographic analysis of the samples after tensile and fatigue tests.
RESUMO
Purpose: This study investigated the influence of three types of metallic microfillers, spherical silver and spherical, and dendritic copper, on the ability of polyamide 12 (PA12) to inhibit microorganism growth on the surfaces of samples produced using laser-based powder bed fusion of polymers (PBF-LB/P). The aim of this study was to initially characterize these materials regarding their potential applicability for parts dedicated to use in the hospitals, where surfaces are periodically disinfected using chemical and/or physical measures. Methods: Composite powders with filler concentrations of 0.5, 1, 2 and 5% by weight were prepared using the mechanical mixing method and processed using PBF-LB/P. Three common hospital pathogens responsible for healthcare-associated infections: Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans were tested. Additionally, the safety of the composites was assessed through in vitro tests using human cell lines: keratinocytes and fibroblasts. Results: The research reveals that addition of copper or silver causes decrease in bacterial colony viability compared to the material without a filler, but an insignificant effect on antifungal properties. There was no significant impact within the tested range of filler's content on the antibacterial properties. Furthermore, a strong effect of the microfillers on tested material's toxicity is observed. Conclusions: The addition of metallic microfillers enhances the antibacterial response of polymeric materials processed with PBF-LB/P. Nevertheless, the observed varying levels of cytotoxicity toward eukaryotic cell lines underscore the need for further studies on the analysed materials to unequivocally determine their potential applicability as materials for short-term contact with human skin in a hospital setting.
Assuntos
Anti-Infecciosos , Lasers , Pós , Humanos , Anti-Infecciosos/farmacologia , Nylons/química , Nylons/farmacologia , Metais/farmacologia , Metais/química , Candida albicans/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Polímeros/farmacologia , Polímeros/química , Prata/farmacologia , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Cobre/farmacologia , Cobre/químicaRESUMO
Additive manufacturing (AM) is dynamically developing and finding applications in different industries. The quality of input material is a part of the process and of the final product quality. That is why understanding the influence of powder reuse on the properties of bulk specimens is crucial for ensuring the repeatable AM process chain. The presented study investigated the possibility of continuous reuse of AlSi7Mg0.6 powder in the laser powder bed fusion process (LPBF). To date, there is no study of AlSi7Mg0.6 powder reuse in the LPBF process to be found in the literature. This study aims to respond to this gap. The five batches of AlSi7Mg0.6 powder and five bulk LPBF samples series were characterised using different techniques. The following characteristics of powders were analysed: the powder size distribution (PSD), the morphology (scanning electron microscopy-SEM), the flowability (rotating drum analysis), and laser light absorption (spectrophotometry). Bulk samples were characterised for microstructure (SEM), chemical composition (X-ray fluorescence spectrometry-XRF), porosity (computed tomography-CT) and mechanical properties (tensile, hardness). The powder was reused in subsequent processes without adding (recycling/rejuvenation) virgin powder (collective ageing powder reuse strategy). All tested powders (powders P0-P4) and bulk samples (series S0-S3) show repeatable properties, with changes observed within error limits. Samples manufactured within the fifth reuse cycle (series S4) showed some mean value changes of measured characteristics indicating initial degradation. However, these changes also mostly fit within error limits. Therefore, the collective ageing powder reuse strategy is considered to give repeatable LPBF process results and is recommended for the AlSi7Mg0.6 alloy within at least five consecutive LPBF processes.
RESUMO
In this paper, a detailed assessment of Inconel 718 powder, with varying degrees of degradation due to repeated use in the Laser Powder Bed Fusion (LPBF) process, has been undertaken. Four states of IN718 powder (virgin, used, overflow and spatter) were characterized in terms of their morphology, flowability and physico-chemical properties. Studies showed that used and overflow powders were almost identical. The fine particle-size distribution of the virgin powder, in which 50% of particles were found to be below the nominal particle-size distribution (PSD), was recognized as the main reason for its lower flowability and the main cause of the differentiation between virgin, used and overflow powders. Only spatter powder was found to be degraded enough to preclude its direct LPBF reuse. The oxygen content in the spatter powder exceeded the limit value for IN718 by 290 ppm, and aluminum oxide spots were found on the spatter particles surfaces. Laser absorption analysis showed 10 pp higher laser absorption compared to the other powders. The results of evaluation showed that IN718 powder is resistant to multiple uses in the LPBF process. Due to the low degradation rate of IN718 powder, overflow powder can be re-enabled for multiple uses with a proper recycling strategy.
RESUMO
Vacuum-pressure casting technology allows small batches of components to be manufactured from polymer materials, mainly from thermosetting plastics such as polyurethane and epoxy resins. Apart from being very simple, the process is also advantageous in that it offers a very accurately reproduced geometrical structure of the surfaces of master patterns used in mold manufacturing. This article presents the results of analyses performed for the process of replicating mechanoscopic marks with the use of three vacuum casting variants, including a hybrid vacuum-pressure casting process developed in particular for the replication purposes. The main research objective was to analyze and evaluate the influence of the parameters of the individual process variants on the quality of the obtained cast parts and on the replication accuracy without introducing additional artifacts on their surfaces. The article discusses the individual stages of the process and provides an analysis of their parameters. The replicas were evaluated for their porosity and reproduction quality with the use of CT methods and comparative photographs obtained from a light microscope.
RESUMO
In the era of the coronavirus pandemic, one of the most demanding areas was the supply of healthcare systems in essential Personal Protection Equipment (PPE), including face-shields and hands-free door openers. This need, impossible to fill by traditional manufacturing methods, was met by implementing of such emerging technologies as additive manufacturing (AM/3D printing). In this article, Poly(lactic acid) (PLA) filaments for Fused filament fabrication (FFF) technology in the context of the antibacterial properties of finished products were analyzed. The methodology included 2D radiography and scanning electron microscopy (SEM) analysis to determine the presence of antimicrobial additives in the material and their impact on such hospital pathogens as Staphylococcus aureus, Pseudomonas aeruginosa, and Clostridium difficile. The results show that not all tested materials displayed the expected antimicrobial properties after processing in FFF technology. The results showed that in the case of specific species of bacteria, the FFF samples, produced using the declared antibacterial materials, may even stimulate the microbial growth. The novelty of the results relies on methodological approach exceeding scope of ISO 22196 standard and is based on tests with three different species of bacteria in two types of media simulating common body fluids that can be found on frequently touched, nosocomial surfaces. The data presented in this article is of pivotal meaning taking under consideration the increasing interest in application of such products in the clinical setting.
RESUMO
This paper presents the results of research on ballistic panels made of polymer-matrix composites (PMCs). The analysis covers two types of composites produced by the authors based on high-density polyethylene (PEHD) and polypropylene (PP) reinforced with aramid fabric. Ballistic tests were carried out with the use of two types of projectile: 0.38 Special, and 9 × 19 Parabellum, which are characterized by different velocity and projectile energy. The study presents the X-ray computed tomography (XCT) analysis for structure assessment of ballistic panels and its impact behavior, further compared to the results of computer simulations conducted using the numerical analysis. The quality of the manufactured panels and their damage caused by a ballistic impact was assessed using a multi-scale geometry reconstruction. The mesoscale XCT allowed the internal composite geometry to be analyzed, as well as a unit cell of the representative volume element (RVE) model to be built. The RVE model was applied for homogenization and finite element (FEA) simulation of projectile penetration through the ballistic panel. The macroscale XCT investigation allowed for the quantitative description of the projectile's impact on the degree of delamination and deformation of the panels' geometry.
RESUMO
The effect of electron-beam melting (EBM) and selective laser melting (SLM) processes on the chemical composition, phase composition, density, microstructure, and microhardness of as-built Ti55511 blocks were evaluated and compared. The work also aimed to understand how each process setting affects the powder characteristics after processing. Experiments have shown that both methods can process Ti55511 successfully and can build parts with almost full density (>99%) without any internal cracks or delamination. It was observed that the SLM build sample can retain the phase composition of the initial powder, while EBM displayed significant phase changes. After the EBM process, a considerable amount of α Ti-phase and lamella-like microstructures were found in the EBM build sample and corresponding powder left in the build chamber. Both processes showed a similar effect on the variation of powder morphology after the process. Despite the apparent difference in alloying composition, the EBM build Ti55511 sample showed similar microhardness as EBM build Ti-6Al-4V. Measured microhardness of the EBM build sample is approximately 10% higher than the SLM build, and it measured as 348 ± 30.20 HV.
RESUMO
Magnesium alloys are well known for their biocompatibility and biodegradable properties [9], [27] owing to the fact that magnesium is a mineral crucial for human body, especially for bone tissue. There are studies [17] on using WE43 additively manufactured magnesium scaffolds for full bone and soft tissue regeneration. Moreover, magnesium implants in bones were investigated as having higher bone-implant interface strength than titanium ones [3]. In this paper, the results of the studies on MAP21 magnesium powder selective laser melting process optimization as a starting point for further bioapplications are presented. MAP21 magnesium alloy owing to its high mechanical properties, excellent vibration damping characteristic and good creep resistance is a promising material to be tested for scaffold structures. The study for the first time shows successful SLM manufacturing of dense samples made of MAP21 alloy. Using an algorithm based on design of experiment (DoE) method [21], the SLM process parameters were designated. The porosity was investigated as a SLM process optimization parameter. High density of produced sample, up to 99%, was achieved. Microstructure and oxidation level after selective laser melting (SLM) manufacturing were characterized. Fine grain microstructure and three kinds of precipitations were found Nd (Gd, Zr, Mg), Mg (Nd, Gd, Zr) and Mg (Zr, Nd, Gd, Zn)). In order to determine the mechanical properties of MAP21 alloy processed with SLM technology, static tensile tests and microhardness tests were conducted, resulting in mechanical properties (Rm = 167 MPa, E = 38.6 GPa, 63-74 HB) comparable with as-cast alloy. A discussion was held on further research opportunities for biomedical use of SLM-ed MAP21 alloy.
Assuntos
Ligas/farmacologia , Lasers , Magnésio/farmacologia , Teste de Materiais/métodos , Dureza , Humanos , Porosidade , Propriedades de Superfície , Resistência à TraçãoRESUMO
In this article, the authors discuss the results of studies into the processing of Ti-5Al-5Mo-5V-1Cr-1Fe near-ß titanium alloy (Ti-55511) by electron beam melting (EBM), an additive manufacturing technique. Due to its high flexibility in shaping mechanical properties, Ti-55511 alloy is commonly used in aircraft components such as landing gear or airframes. In this study, Ti-55511 powder was used and its properties were described as regards chemical composition and particle size distribution in order to assess its suitability for EBM processing and repeatability of results. 20 sets of processing parameters were tested in the energy input range between 10 J/mm3 and 50 J/mm3 (cathode current, 4.5 mA-19.5 mA; scanning speed, 1080 mm/s-23400 mm/s). Four types of top surfaces were obtained, namely, flat, orange peel, with single pores, and with swelling. Best results were obtained for the energy of 30 J/mm3: flat top surface and relative density in excess of 99.9%. Analysis of chemical composition showed that aluminum loss was below the specification minimum for the analyzed parameter sets. Scanning speed most significantly affected aluminum content: the lower the scanning speed, the higher the aluminum loss. Analysis of microstructures showed the dependence of lamellar α-phase volume fraction on the process parameters used. For low scanning speed, the determined α-phase volume accounted for about 78%. Higher scanning speed resulted in a decrease of the α-phase content to 61%. The dimensions of the lamellas and the amount of the α-phase strongly effected hardness results (360 HV to 430 HV).
RESUMO
Standard experimental research works are aimed at optimization of Selective Laser Melting (SLM) parameters in order to produce material with relative density over 99% and possibly the highest scanning speed. Typically, cuboidal specimens with arbitrarily selected dimensions are built. An optimum set of parameters, determined on such specimens, is used for building parts with variable cross-section areas. However, it gives no guarantee that the density of variable-section parts produced with so selected parameters will be as high as that of the specimens measured during the parameters optimization process. The goal of this work was to improve the process of SLM parameter selection according to the criterion of maximum relative density, based on the example of AISI H13 tool steel (1.2344). A selection method of scanning strategy ensuring relative density of parts over 99%, irrespective of their dimensions, was determined. The specimens were produced using several variants of support structures. It was found that proper selection of the support strategy prevents development of columnar pores.