Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(6)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34710860

RESUMO

Anodic titanium oxide (ATO) photonic crystals (PhCs) are promising for photonics, photocatalysis, and solar cells. A refractive index modulation in ATO PhCs is caused by the modulation of porosity and, thus, the pore diameter should be controlled precisely. The ATO cell walls etching in electrolyte solution during anodizing increases the porosity of the PhC structure and shifts the photonic band gap (PBG) position to shorter wavelengths. Until now, the ATO cell walls etching in organic based electrolytes has been associated solely with the chemical dissolution of ATO in fluoride-containing solutions. Here, a significant enhancement of cell walls etching is observed when electric current flows under anodic polarization. This effect leads to the blue shift of the PBG position with the number of periods of ATO PhC structure. Therefore, it is essential for the synthesis of ATO PhCs with a precise PBG position.

2.
Phys Chem Chem Phys ; 22(44): 25450-25454, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33170195

RESUMO

The formation of trimetallic terbium-europium-gadolinium complexes was proposed as an approach to increase the sensitivity of the corresponding terbium-europium complexes for temperature measurement due to the suppression of multiphotonic emission. This approach results in over a 2-fold increase of the sensitivity of Eu-Tb carboxylate, which reached 5.3% K-1 in the physiological range.

3.
J Phys Chem Lett ; 15(1): 298-306, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38166418

RESUMO

A combination of the unique porous structure and physical and chemical properties of anodic aluminum oxide (AAO) makes it widely used in cutting-edge areas of materials science and nanotechnology. Selenic acid electrolyte provides the ability to obtain AAO with low porosity and high optical transparency and thus is promising for the preparation of AAO photonic crystals (PhCs). Here, we show the influence of crystallographic orientation of Al on the electrochemical oxidation rate in 1 M H2SeO4 as well as on the growth rate, porosity, and the effective refractive index of AAO. The cyclic anodization regime is used to prepare AAO PhCs with photonic band gaps, their wavelength positions are used to measure the AAO growth rate. At an anodization voltage of 40-45 V, the growth rate varies by up to 22.6% with crystallographic orientation of Al grains, causing the stained glass effect, which can be seen with the naked eye.

4.
J Phys Chem Lett ; 15(16): 4319-4326, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38619331

RESUMO

Photonic crystals (PCs) consisting of a periodic arrangement of holes in dielectric media have found success in light manipulation and sensing. Among them, three-dimensional (3D) PCs are in high demand due to their unique properties originating from multiple photonic band gaps (PBGs) and even full ones. Here, 3D PCs based on porous anodic aluminum oxide (AAO) were fabricated for the first time. Our approach involves prepatterning of the aluminum surface by a focused ion beam to form a hexagonal array of pore nuclei. Subsequent anodization in 1 M H3PO3 using a sine wave profile of voltage provides AAO with a defect-free in-plane porous structure and out-of-plane porosity modulation. The ability to tune the position, width, and depth of the PBGs is demonstrated. The combination of the flexibility of the proposed approach with the unique properties of AAO extends the range of practical applications of 3D PCs far beyond the current achievements.

5.
Nanomaterials (Basel) ; 12(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35564256

RESUMO

One-dimensional photonic crystals (1D PhCs) obtained by aluminium anodizing under oscillating conditions are promising materials with structure-dependent optical properties. Electrolytes based on sulphuric, oxalic, and selenic acids have been utilized for the preparation of anodic aluminium oxide (AAO) 1D PhCs with sub-100-nm pore diameter. AAO films with larger pores can be obtained by anodizing in phosphorous acid at high voltages. Here, for the first time, anodizing in phosphorous acid is applied for the preparation of AAO 1D PhCs with nonbranched macropores. The sine wave profile of anodizing voltage in the 135-165 V range produces straight pores, whose diameter is above 100 nm and alternates periodically in size. The pore diameter modulation period linearly increases with the charge density by a factor of 599 ± 15 nm·cm2·C-1. The position of the photonic band gap is controlled precisely in the 0.63-1.96 µm range, and the effective refractive index of AAO 1D PhCs is 1.58 ± 0.05.

6.
Nanomaterials (Basel) ; 12(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36558259

RESUMO

The anodizing of aluminium under oscillating conditions is a versatile and reproducible method for the preparation of one-dimensional photonic crystals (PhCs). Many anodizing parameters have been optimised to improve the optical properties of anodic aluminium oxide (AAO) PhCs. However, the influence of the crystallographic orientation of an Al substrate on the characteristics of AAO PhCs has not been considered yet. Here, the effect of Al substrate crystallography on the properties of AAO PhCs is investigated. It is experimentally demonstrated that the cyclic anodizing of coarse-grained aluminium foils produces a mosaic of photonic crystals. The crystallographic orientation of Al grains affects the electrochemical oxidation rate of Al, the growth rate of AAO, and the wavelength position of the photonic band gap.

7.
Nanomaterials (Basel) ; 12(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35564126

RESUMO

Anodization of aluminum with a pre-patterned surface is a promising approach for preparing anodic aluminum oxide (AAO) films with defect-free pore arrangement. Although pronounced effects of crystallographic orientation of Al on the AAO structure have been demonstrated, all current studies on the anodization of pre-patterned aluminum consider the substrate as an isotropic medium and, thus, do not consider the azimuthal orientation of the pattern relative to the basis vectors of the Al unit cell. Here, we investigate the interplay between the azimuthal alignment of the pore nuclei array and the crystallographic orientation of aluminum. Al(100) and Al(111) single-crystal substrates were pre-patterned by a Ga focused ion beam and then anodized under self-ordering conditions. The thickness-dependent degree of pore ordering in AAO was quantified using statistical analysis of scanning electron microscopy images. The observed trends demonstrate that the preferred azimuthal orientation of pore nuclei rows coincides with the <110> directions in the Al unit cell, which is favorable for creating AAO with a high degree of pore ordering. In the case of an unspecified azimuthal orientation of the pore nuclei array, crystallography-affected disorder within the AAO structure occurs with increasing film thickness. Our findings have important implications for preparing defect-free porous films over 100 µm in thickness that are crucial for a variety of AAO applications, e.g., creating metamaterials and 2D/3D photonic crystals.

8.
Nanomaterials (Basel) ; 9(4)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018593

RESUMO

Photonic crystals based on titanium oxide are promising for optoelectronic applications, for example as components of solar cells and photodetectors. These materials attract great research attention because of the high refractive index of TiO2. One of the promising routes to prepare photonic crystals based on titanium oxide is titanium anodizing at periodically changing voltage or current. However, precise control of the photonic band gap position in anodic titania films is a challenge. To solve this problem, systematic data on the effective refractive index of the porous anodic titanium oxide are required. In this research, we determine quantitatively the dependence of the effective refractive index of porous anodic titanium oxide on the anodizing regime and develop a model which allows one to predict and, therefore, control photonic band gap position in the visible spectrum range with an accuracy better than 98.5%. The prospects of anodic titania photonic crystals implementation as refractive index sensors are demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA