Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 156(4): 730-43, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24529376

RESUMO

Osteoarthritis (OA), primarily characterized by cartilage degeneration, is caused by an imbalance between anabolic and catabolic factors. Here, we investigated the role of zinc (Zn2+) homeostasis, Zn2+ transporters, and Zn(2+)-dependent transcription factors in OA pathogenesis. Among Zn2+ transporters, the Zn2+ importer ZIP8 was specifically upregulated in OA cartilage of humans and mice, resulting in increased levels of intracellular Zn2+ in chondrocytes. ZIP8-mediated Zn2+ influx upregulated the expression of matrix-degrading enzymes (MMP3, MMP9, MMP12, MMP13, and ADAMTS5) in chondrocytes. Ectopic expression of ZIP8 in mouse cartilage tissue caused OA cartilage destruction, whereas Zip8 knockout suppressed surgically induced OA pathogenesis, with concomitant modulation of Zn2+ influx and matrix-degrading enzymes. Furthermore, MTF1 was identified as an essential transcription factor in mediating Zn2+/ZIP8-induced catabolic factor expression, and genetic modulation of Mtf1 in mice altered OA pathogenesis. We propose that the zinc-ZIP8-MTF1 axis is an essential catabolic regulator of OA pathogenesis.


Assuntos
Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais , Proteínas ADAM/metabolismo , Idoso , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Regulação para Cima , Zinco/metabolismo
2.
Nature ; 566(7743): 254-258, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30728500

RESUMO

Osteoarthritis-the most common form of age-related degenerative whole-joint disease1-is primarily characterized by cartilage destruction, as well as by synovial inflammation, osteophyte formation and subchondral bone remodelling2,3. However, the molecular mechanisms that underlie the pathogenesis of osteoarthritis are largely unknown. Although osteoarthritis is currently considered to be associated with metabolic disorders, direct evidence for this is lacking, and the role of cholesterol metabolism in the pathogenesis of osteoarthritis has not been fully investigated4-6. Various types of cholesterol hydroxylases contribute to cholesterol metabolism in extrahepatic tissues by converting cellular cholesterol to circulating oxysterols, which regulate diverse biological processes7,8. Here we show that the CH25H-CYP7B1-RORα axis of cholesterol metabolism in chondrocytes is a crucial catabolic regulator of the pathogenesis of osteoarthritis. Osteoarthritic chondrocytes had increased levels of cholesterol because of enhanced uptake, upregulation of cholesterol hydroxylases (CH25H and CYP7B1) and increased production of oxysterol metabolites. Adenoviral overexpression of CH25H or CYP7B1 in mouse joint tissues caused experimental osteoarthritis, whereas knockout or knockdown of these hydroxylases abrogated the pathogenesis of osteoarthritis. Moreover, retinoic acid-related orphan receptor alpha (RORα) was found to mediate the induction of osteoarthritis by alterations in cholesterol metabolism. These results indicate that osteoarthritis is a disease associated with metabolic disorders and suggest that targeting the CH25H-CYP7B1-RORα axis of cholesterol metabolism may provide a therapeutic avenue for treating osteoarthritis.


Assuntos
Colesterol/metabolismo , Família 7 do Citocromo P450/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Osteoartrite/metabolismo , Esteroide Hidroxilases/metabolismo , Animais , Transporte Biológico , Condrócitos/enzimologia , Condrócitos/metabolismo , Masculino , Camundongos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Osteoartrite/enzimologia , Osteoartrite/patologia , Oxisteróis/metabolismo , Esteroide Hidroxilases/deficiência , Regulação para Cima
3.
Proc Natl Acad Sci U S A ; 112(30): 9424-9, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26170306

RESUMO

Osteoarthritis (OA) is characterized by impairment of the load-bearing function of articular cartilage. OA cartilage matrix undergoes extensive biophysical remodeling characterized by decreased compliance. In this study, we elucidate the mechanistic origin of matrix remodeling and the downstream mechanotransduction pathway and further demonstrate an active role of this mechanism in OA pathogenesis. Aging and mechanical stress, the two major risk factors of OA, promote cartilage matrix stiffening through the accumulation of advanced glycation end-products and up-regulation of the collagen cross-linking enzyme lysyl oxidase, respectively. Increasing matrix stiffness substantially disrupts the homeostatic balance between chondrocyte catabolism and anabolism via the Rho-Rho kinase-myosin light chain axis, consequently eliciting OA pathogenesis in mice. Experimental enhancement of nonenzymatic or enzymatic matrix cross-linking augments surgically induced OA pathogenesis in mice, and suppressing these events effectively inhibits OA with concomitant modulation of matrix degrading enzymes. Based on these findings, we propose a central role of matrix-mediated mechanotransduction in OA pathogenesis.


Assuntos
Cartilagem Articular/patologia , Mecanotransdução Celular , Osteoartrite/patologia , Resinas Acrílicas/química , Idoso , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Condrócitos/citologia , Colágeno/química , Reagentes de Ligações Cruzadas/química , Genes Reporter , Produtos Finais de Glicação Avançada/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Pessoa de Meia-Idade , Proteína-Lisina 6-Oxidase/metabolismo , Fatores de Risco , Transdução de Sinais , Estresse Mecânico
4.
PLoS Biol ; 12(6): e1001881, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24914685

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disorder that manifests as chronic inflammation and joint tissue destruction. However, the etiology and pathogenesis of RA have not been fully elucidated. Here, we explored the role of the hypoxia-inducible factors (HIFs), HIF-1α (encoded by HIF1A) and HIF-2α (encoded by EPAS1). HIF-2α was markedly up-regulated in the intimal lining of RA synovium, whereas HIF-1α was detected in a few cells in the sublining and deep layer of RA synovium. Overexpression of HIF-2α in joint tissues caused an RA-like phenotype, whereas HIF-1α did not affect joint architecture. Moreover, a HIF-2α deficiency in mice blunted the development of experimental RA. HIF-2α was expressed mainly in fibroblast-like synoviocytes (FLS) of RA synovium and regulated their proliferation, expression of RANKL (receptor activator of nuclear factor-κB ligand) and various catabolic factors, and osteoclastogenic potential. Moreover, HIF-2α-dependent up-regulation of interleukin (IL)-6 in FLS stimulated differentiation of TH17 cells-crucial effectors of RA pathogenesis. Additionally, in the absence of IL-6 (Il6-/- mice), overexpression of HIF-2α in joint tissues did not cause an RA phenotype. Thus, our results collectively suggest that HIF-2α plays a pivotal role in the pathogenesis of RA by regulating FLS functions, independent of HIF-1α.


Assuntos
Artrite Experimental/etiologia , Artrite Reumatoide/etiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Animais , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Diferenciação Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Fenótipo , Membrana Sinovial/metabolismo , Células Th17/citologia , Regulação para Cima
5.
Ann Rheum Dis ; 74(3): 595-602, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24347567

RESUMO

OBJECTIVE: Hypoxia-inducible factor 2α (HIF-2α), encoded by Epas1, causes osteoarthritic cartilage destruction by regulating the expression of matrix-degrading enzymes. We undertook this study to explore the role of nicotinamide phosphoribosyltransferase (NAMPT or visfatin) in HIF-2α-mediated osteoarthritic cartilage destruction. METHODS: The expression of HIF-2α, NAMPT and matrix-degrading enzymes was determined at the mRNA and protein levels in human osteoarthritis (OA) cartilage, mouse experimental OA cartilage and primary cultured mouse chondrocytes. Experimental OA in mice was induced by destabilisation of the medial meniscus (DMM) surgery or intra-articular injection of Ad-Epas1 or Ad-Nampt in wild-type, Epas1(+/-), Epas1(fl/fl);Col2a1-Cre and Col2a1-Nampt transgenic (TG) mice. Primary cultured mouse chondrocytes were treated with recombinant NAMPT protein or were infected with adenoviruses. RESULTS: We found that the Nampt gene is a direct target of HIF-2α in articular chondrocytes and OA cartilage. NAMPT protein, in turn, increased mRNA levels and activities of MMP3, MMP12 and MMP13 in chondrocytes, an action that was necessary for HIF-2α-induced expression of catabolic enzymes. Gain-of-function studies (intra-articular injection of Ad-Nampt; Col2a1-Nampt TG mice) and loss-of-function studies (intra-articular injection of the NAMPT inhibitor FK866) demonstrated that NAMPT is an essential catabolic regulator of osteoarthritic cartilage destruction caused by HIF-2α or DMM surgery. CONCLUSIONS: Our findings indicate that NAMPT, whose corresponding gene is a direct target of HIF-2α, plays an essential catabolic role in OA pathogenesis and acts as a crucial mediator of osteoarthritic cartilage destruction caused by HIF-2α or DMM surgery.


Assuntos
Artrite Experimental/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Osteoartrite/metabolismo , Agrecanas/metabolismo , Animais , Cartilagem Articular/citologia , Humanos , Metaloproteinases da Matriz/metabolismo , Meniscos Tibiais/cirurgia , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
6.
Exp Mol Med ; 53(4): 560-571, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33795795

RESUMO

Zinc is a trace element that is essential for immune responses. Therefore, changes in cellular zinc levels in specific immune cells may influence inflammatory autoimmune diseases, such as rheumatoid arthritis (RA). However, the regulation of zinc mobilization in immune cells and its role in the pathogenesis of RA are not fully understood. Thus, we investigated the roles of zinc transporters in RA pathogenesis. We demonstrated that ZIP8 was specifically upregulated in CD4+ T cells that infiltrated the inflamed joint and that ZIP8 deficiency in CD4+ T cells abrogated collagen-induced arthritis. ZIP8 deficiency dramatically affected zinc influx in effector T cells and profoundly reduced T cell receptor (TCR)-mediated signaling, including NF-κB and MAPK signaling, which are pathways that are involved in T helper (Th) 17 cell differentiation. Taken together, our findings suggest that ZIP8 depletion in CD4+ T cells attenuates TCR signaling due to insufficient cellular zinc, thereby reducing the function of effector CD4+ T cells, including Th17 cells. Our results also suggest that targeting ZIP8 may be a useful strategy to inhibit RA development and pathogenesis.


Assuntos
Artrite Experimental/etiologia , Artrite Experimental/metabolismo , Proteínas de Transporte de Cátions/genética , Suscetibilidade a Doenças , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Artrite Experimental/patologia , Biomarcadores , Proteínas de Transporte de Cátions/metabolismo , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Progressão da Doença , Imunofluorescência , Humanos , Imuno-Histoquímica , Imunofenotipagem , Ativação Linfocitária , Camundongos Knockout , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Subpopulações de Linfócitos T/patologia , Células Th17/imunologia , Células Th17/metabolismo , Células Th17/patologia
7.
Arthritis Res Ther ; 20(1): 161, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30071881

RESUMO

BACKGROUND: We recently demonstrated that BATF, a member of the activator protein-1 (AP-1) family, regulates osteoarthritic cartilage destruction. Here, we explored the roles and regulatory mechanisms of BATF in collagen-induced arthritis (CIA) in mice. METHODS: CIA and K/BxN serum transfer were used to generate inflammatory arthritis models in wild-type (WT) and Batf-/- mice. RA manifestations were determined by examining CIA incidence, clinical score, synovitis, synovial hyperplasia, angiogenesis in inflamed synovium, pannus formation, bone erosion, and cartilage destruction. Immune features in RA were analyzed by examining immune cell populations and cytokine production. RESULTS: BATF was upregulated in the synovial tissues of joints in which inflammatory arthritis had been caused by CIA or K/BxN serum transfer. The increases in CIA incidence, clinical score, and autoantibody production in CIA-induced WT mice were completely abrogated in the corresponding Batf-/- DBA/1 J mice. Genetic ablation of Batf also inhibited CIA-induced synovitis, synovial hyperplasia, angiogenesis in synovial tissues, pannus formation, bone erosion, and cartilage destruction. Batf knockout inhibited the differentiation of T helper (Th)17 cells and the conversion of CD4+Foxp3+ cells to CD4+IL-17+ cells. However, BATF did not modulate the functions of fibroblast-like synoviocytes (FLS), including the expressions of chemokines, matrix-degrading enzymes, vascular endothelial growth factor, and receptor activator of NF-κB ligand (RANKL). CONCLUSION: Our findings indicate that BATF crucially mediates CIA by regulating Th cell differentiation without directly affecting the functions of FLS.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular/imunologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Sinoviócitos/metabolismo
8.
Nat Commun ; 8(1): 2133, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247173

RESUMO

The estrogen-related receptor (ERR) family of orphan nuclear receptor is composed of ERRα, ERRß, and ERRγ, which are known to regulate various isoform-specific functions under normal and pathophysiological conditions. Here, we investigate the involvement of ERRs in the pathogenesis of osteoarthritis (OA) in mice. Among ERR family members, ERRγ is markedly upregulated in cartilage from human OA patients and various mouse models of OA. Adenovirus-mediated overexpression of ERRγ in mouse knee joint or transgenic expression of ERRγ in cartilage leads to OA. ERRγ overexpression in chondrocytes directly upregulates matrix metalloproteinase (MMP)-3 and MMP13, which are known to play crucial roles in cartilage destruction in OA. In contrast, genetic ablation of Esrrg or shRNA-mediated downregulation of Esrrg in joint tissues abrogates experimental OA in mice. Our results collectively indicate that ERRγ is a novel catabolic regulator of OA pathogenesis.


Assuntos
Metaloproteinase 13 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , Osteoartrite/genética , Receptores de Estrogênio/genética , Animais , Células Cultivadas , Condrócitos/enzimologia , Condrócitos/metabolismo , Perfilação da Expressão Gênica , Humanos , Articulação do Joelho/enzimologia , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Osteoartrite/metabolismo , Interferência de RNA , Receptores de Estrogênio/metabolismo , Regulação para Cima
9.
J Agric Food Chem ; 53(16): 6491-6, 2005 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16076139

RESUMO

An antifungal protein, AFP-J, was purified from tubers of the potato (Solanum tuberosum cv. L Jopung) by various chromatographic columns. AFP-J strongly inhibited yeast fungal strains, including Candida albicans, Trichosporon beigelii, and Saccharomyces cerevisiae, whereas it exhibited no activity against crop fungal pathogens. Automated Edman degradation determined the partial N-terminal sequence of AFP-J to be NH2-Leu-Pro-Ser-Asp-Ala-Thr-Leu-Val-Leu-Asp-Gln-Thr-Gly-Lys-G lu-Leu-Asp-Ala-Arg-Leu-. The partially sequence had 83% homology with a serine protease inhibitor belonging to the Kunitz family, and the protein inhibited chymotrypsin, pepsin, and trypsin. Mass spectrometry showed that its molecular mass was 13 500.5 Da. This protease inhibitor suppressed over 50% the proteolytic activity at 400 microg/mL. These results suggest that AFP-J is an excellent candidate as a lead compound for the development of novel antiinfective agents.


Assuntos
Peptídeos/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Tubérculos/química , Solanum/química , Sequência de Aminoácidos , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA