Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Chem Res Toxicol ; 23(6): 1025-33, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20521778

RESUMO

The key to the discovery of new pharmaceuticals is to develop molecules that interact with the intended target and minimize interaction with unintended molecular targets, therefore minimizing toxicity. This is aided by the use of various in vitro selectivity assays that are used to select agents most potent for the desired target. Typically, molecules from similar chemical series, with similar in vitro potencies, are expected to yield comparable in vivo pharmacological and toxicological profiles, predictive of target effects. However, in this study, we investigated the in vivo effects of two analogue compounds that similarly inhibit several receptor tyrosine kinases such as vascular endothelial growth factor receptor 1 (VEGFR/Flt1), vascular endothelial growth factor 2 (VEGFR2/kinase domain receptor/Flk-1), vascular endothelial growth factor receptor 3 (VEGFR3/Flt4), platelet-derived growth factor receptor (PDGFR), and Kit receptors, which bear similar chemical structures, have comparable potencies, but differ markedly in their rodent toxicity profiles. Global gene expression data were used to generate hypotheses regarding the existence of toxicity triggers that would reflect the perturbation of signaling in multiple organs such as the liver, adrenal glands, and the pancreas in response to compound treatment. We concluded that differences in pharmacokinetic properties of the two analogues, such as volume of distribution, half-life, and organ concentrations, resulted in marked differences in the chemical burden on target organs and may have contributed to the vast differences in toxicity profiles observed with the two otherwise similar molecules. We propose including select toxicokinetic parameters such as V(ss), T(1/2), and T(max) as additional criteria that could be used to rank order compounds from the same pharmacological series to possibly minimize organ toxicity. Assessment of toxicokinetics is not an atypical activity on toxicology studies, even in early screening studies; however, these data may not always be used in decision making for selecting or eliminating one compound over another. Finally, we illustrate that in vivo gene expression profiles can serve as a complementary assessor of this activity and simultaneously help provide an assessment of on or off-target biological activity.


Assuntos
Expressão Gênica/efeitos dos fármacos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Genômica , Masculino , Inibidores de Proteínas Quinases/química , Ratos , Ratos Sprague-Dawley , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
2.
J Biol Chem ; 282(34): 24670-8, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17609210

RESUMO

Oxidative stress-responsive transcription is regulated in part through cis-active sequences known as antioxidant response elements (ARE). Activation through the ARE involves members of the CNC-subfamily of basic leucine zipper proteins including Nrf1 and Nrf2. In particular, Nrf2 has been shown to coordinate induction of genes encoding antioxidant and phase 2 metabolizing enzymes in response to stimulation with electrophilic compounds and exposure to xenobiotics. Here we show that the 65-kDa isoform of the Nrf1 gene functions as a repressor of Nrf2. Transient expression of p65Nrf1 suppressed Nrf2-mediated activation of ARE-dependent reporter genes in cells. Induction of endogenous ARE-genes is blocked in Hepa1c1c7 cells stably expressing p65Nrf1 leading to increased cell death. Consistent with these findings, electrophilic activation of ARE-gene expression is augmented by loss of p65Nrf1 function in Nrf1(-/-) fibroblasts, and the protective effects of oxidative preconditioning and ARE-gene expression are blocked in Nrf1(-/-) cells stably expressing p65Nrf1. Gel shift experiments demonstrated that p65Nrf1 binds the antioxidant response element as a heterodimer with small-Maf protein. Immunoprecipitation studies demonstrated that p65Nrf1 competes with Nrf2 for interaction with small-Maf protein and binding to the antioxidant response element in vivo. Together, these results demonstrate that p65Nrf1 has the potential to play an important role in modulating the response to oxidative stress by functioning as a transdominant repressor of Nrf2-mediated activation of ARE-dependent gene transcription.


Assuntos
Antioxidantes/metabolismo , Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2/metabolismo , Fator 1 Nuclear Respiratório/fisiologia , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Chlorocebus aethiops , Genes Dominantes , Células HeLa , Humanos , Fator 1 Nuclear Respiratório/química , Estresse Oxidativo , Isoformas de Proteínas , Retroviridae , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA