Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Environ Res ; 252(Pt 3): 118990, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670214

RESUMO

This study aimed to investigate bone char's physicochemical transformations through co-torrefaction and co-pyrolysis processes with biomass. Additionally, it aimed to analyze the carbon sequestration process during co-torrefaction of bone and biomass and optimize the process parameters of co-torrefaction. Finally, the study sought to evaluate the arsenic sorption capacity of both torrefied and co-torrefied bone char. Bone and biomass co-torrefaction was conducted at 175 °C-300 °C. An orthogonal array of Taguchi techniques and artificial neural networks (ANN) were employed to investigate the influence of various torrefaction parameters on carbon dioxide sequestration within torrefied bone char. A co-torrefied bone char, torrefied at a reaction temperature of 300 °C, a heating rate of 15 °C·min-1, and mixed with 5 g m of biomass (wood dust), was selected for the arsenic (III) sorption experiment due to its elevated carbonate content. The results revealed a higher carbonate fraction (21%) in co-torrefied bone char at 300 °C compared to co-pyrolyzed bone char (500-700 °C). Taguchi and artificial neural network (ANN) analyses indicated that the relative impact of process factors on carbonate substitution in bone char followed the order of co-torrefaction temperature (38.8%) > heating rate (31.06%) > addition of wood biomass (30.1%). Co-torrefied bone chars at 300 °C exhibited a sorption capacity of approximately 3 mg g-1, surpassing values observed for pyrolyzed bone chars at 900 °C in the literature. The findings suggest that co-torrefied bone char could serve effectively as a sorbent in filters for wastewater treatment and potentially fulfill roles such as a remediation agent, pH stabilizer, or valuable source of biofertilizer in agricultural applications.


Assuntos
Arsênio , Biomassa , Carvão Vegetal , Águas Residuárias , Poluentes Químicos da Água , Arsênio/análise , Arsênio/química , Carvão Vegetal/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Adsorção , Osso e Ossos/química , Redes Neurais de Computação , Animais , Pirólise
2.
Environ Res ; 220: 115217, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608762

RESUMO

As the global consumption of cigarettes has increased, the massive generation of cigarette butts (CBs) has led to critical environmental and health problems. Landfilling or incineration of CBs has been conventionally carried out, but such disposal protocols have suffered from the potential risks of the unwanted/uncontrolled release of leachates, carcinogens, and toxic chemicals into all environmental media. Thus, this study focuses on developing an environmentally dependable method for CB disposal. Littered CBs from filtered/electronic cigarettes were valorized into syngas (H2/CO). To seek a greener approach for the valorization of CBs, CO2 was intentionally considered as a reaction intermediate. Prior to multiple pyrolysis studies, the toxic chemicals in the CBs were qualitatively determined. This study experimentally proved that the toxic chemicals in CBs were detoxified/valorized into syngas. Furthermore, this work demonstrated that CO2 was effective in thermally destroying toxic chemicals in CBs via a gas-phase reaction. The reaction features and CO2 synergistically enhance syngas production. With the use of a supported Ni catalyst and CO2, syngas production from the catalytic pyrolysis of CBs was greatly enhanced (approximately 4 times). Finally, the gas-phase reaction by CO2 was reliably maintained owing to the synergistic mechanistic/reaction feature of CO2 for coke formation prevention on the catalyst surface.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Dióxido de Carbono , Incineração , Pirólise
3.
Chem Eng J ; 405: 126658, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32834763

RESUMO

It becomes common to wear a disposable face mask to protect from coronavirus disease 19 (COVID-19) amid this pandemic. However, massive generations of contaminated face mask cause environmental concerns because current disposal processes (i.e., incineration and reclamation) for them release toxic chemicals. The disposable mask is made of different compounds, making it hard to be recycled. In this regard, this work suggests an environmentally benign disposal process, simultaneously achieving the production of valuable fuels from the face mask. To this end, CO2-assisted thermo-chemical process was conducted. The first part of this work determined the major chemical constituents of a disposable mask: polypropylene, polyethylene, nylon, and Fe. In the second part, pyrolysis study was employed to produce syngas and C1-2 hydrocarbons (HCs) from the disposable mask. To enhance syngas and C1-2 HCs formations, multi-stage pyrolysis was used for more C-C and C-H bonds scissions of the disposable mask. Catalytic pyrolysis over Ni/SiO2 further expedited H2 and CH4 formations due to its capability for dehydrogenation. In the presence of CO2, catalytic pyrolysis additionally produced CO, while pyrolysis in N2 did not produce it. Therefore, the thermo-chemical conversion of disposable face mask and CO2 could be an environmentally benign way to remove COVID-19 plastic waste, generating value-added products.

4.
Energy (Oxf) ; 230: 120876, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33994654

RESUMO

In this study, co-pyrolysis of single-use face mask (for the protection against COVID-19) and food waste was investigated for the purpose of energy and resource valorization of the waste materials. To this end, disposable face mask (a piece of personal protective equipment) was pyrolyzed to produce fuel-range chemicals. The pyrolytic gas evolved from the pyrolysis of the single-use face mask consisted primarily of non-condensable permanent hydrocarbons such as CH4, C2H4, C2H6, C3H6, and C3H8. An increase in pyrolysis temperature enhanced the non-condensable hydrocarbon yields. The pyrolytic gas had a HHV of >40 MJ kg-1. In addition, hydrocarbons with wider carbon number ranges (e.g., gasoline-, jet fuel-, diesel-, and motor oil-range hydrocarbons) were produced in the pyrolysis of the disposable face mask. The yields of the gasoline-, jet fuel-, and diesel-range hydrocarbons obtained from the single-use mask were highest at 973 K. The pyrolysis of the single-use face mask yielded 14.7 wt% gasoline-, 18.4 wt% jet fuel-, 34.1 wt% diesel-, and 18.1 wt% motor oil-range hydrocarbons. No solid char was produced via the pyrolysis of the disposable face mask. The addition of food waste to the pyrolysis feedstock led to the formation of char, but the presence of the single-use face mask did not affect the properties and energy content of the char. More H2 and less hydrocarbons were produced by co-feeding food waste in the pyrolysis of the disposable face mask. The results of this study can contribute to thermochemical management and utilization of everyday waste as a source of energy.

5.
Environ Sci Technol ; 54(10): 6329-6343, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32343132

RESUMO

As global warming and climate change become perceived as significant, the release of greenhouse gases (GHGs) stored in the earth's polar regions is considered a matter of concern. Here, we focused on exploiting GHGs to address potential global warming challenges in the north polar regions. In particular, we used CO2 as a soft oxidant to recover energy as syngas (CO and H2) and to produce biochars from pyrolysis of peat moss. CO2 expedited homogeneous reaction with volatile matters from peat moss pyrolysis, and the mechanistic CO2 role resulted in the conversion of CO2 and peat moss to CO at ≥530 °C. Steel slag waste was then used as an ex situ catalyst to increase reaction kinetics, addressing the issue of the role of CO2 being limited to ≥530 °C, with the result where substantial H2 and CO formation was achieved at a milder temperature. The porosity of biochars, a solid peat moss pyrolysis product, was modified in the presence of CO2, with a significant improvement in CO2 adsorption capacity compared to those achieved by N2 pyrolysis. Therefore, CO2 has the potential to serve as an initial feedstock in sustainable biomass-to-energy applications and biochar production, mitigating atmospheric carbon concentrations.


Assuntos
Pirólise , Sphagnopsida , Dióxido de Carbono , Carvão Vegetal , Clima Frio , Oxidantes
6.
Environ Res ; 184: 109325, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32145547

RESUMO

Biomass valorization is emerging as a new trend for the synthesis of materials for various environmental applications. In this connection, a biochar resulting from pyrolysis of rice straw was employed as a catalytic material for the conversion of hemicellulose-derived furan into value-added platform chemicals such as 1,4-butanediol (1,4-BD) and tetrahydrofuran (THF). The biochar was used as catalyst support of bifunctional Ru-Re catalyst. Two different catalysts were prepared: a conventional activated carbon (AC)-supported Ru-Re catalyst (Ru-Re/AC) and a biochar-supported Ru-Re catalyst (Ru-Re/biochar). The Ru-Re/biochar had a different form of Re species from the Ru-Re/AC, resulting in different reducibility. The difference of reducibility between the two was attributed to alkali metal present in the biochar such as potassium. The Ru-Re/biochar had a 17 times lower metal dispersion on the surface than the Ru-Re/AC, ascribed to a lower surface area of the biochar than the AC. Catalytic activities of the catalysts with regard to reaction rate per available surface active site for transforming furan to 1,4-BD and THF were measured. The Ru-Re/AC was 3 times less active than the Ru-Re/biochar. This study not only provides a way to efficiently use biomass both for environmental catalysts and for feedstock of producing value-added platform chemicals, but also shows potential of biochar for the replacement of typical catalysts employed in biorefinery.


Assuntos
Carvão Vegetal , Furanos , Butileno Glicóis , Pirólise
7.
Environ Res ; 183: 109199, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32028179

RESUMO

In this study, it is introduced a sustainable synthetic route of alkyl esters, considered value-added industrial chemicals and fuels, from volatile fatty acids (VFAs) that can potentially be generated from organic waste. In the presence of a porous carbon material, the thermally induced reaction could be conducted under an initial pressure of 1 atm. Even though the reaction was finished within <10 s, they gave a high yield of target products: the conversion of six VFAs into their corresponding methyl esters which can be further converted into gasoline alternatives with >90 wt% yields. The carbon black showed better performance for both reactions than other commercially available porous material such as silica. This work suggests that carbon is a good option of being used as a porous material for thermal esterification to produce renewable alternative chemicals from waste-derived feedstocks.


Assuntos
Ésteres , Fuligem , Esterificação , Ácidos Graxos Voláteis , Gasolina
8.
Environ Res ; 184: 109267, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32113026

RESUMO

Emulsification is a cost effective and simple method to use pyrolysis oil (or bio-oil) along with diesel as an emulsified fuel. Several combinations of emulsifiers, such as Span 80 and Atlox 4916, Span 80 and Zephrym PD3315, and Atlox 4916 and Zephrym PD3315, were tested to obtain stable emulsions. Two set of reactors (ultrasonicator and agitator-based mechanical reactor system) were used for the process. The ether-extracted pyrolysis oil (EEO), emulsifier, and diesel content of 10%-15%, 3%, and 82-87% were exposed to an ultrasonic power of 40% and with an agitation rate of 900 rpm. The emulsions obtained using Span 80 and Zephrym PD3315 showed stratification within 10 min. The emulsions for Span 80 and Atlox 4916 with a ratio of 3/15/82 for Emulsifer/EEO/Diesel, and for Atlox 4916 and Zephrym PD3315 emulsifiers with a ratio of 3/10/87 for Emulsifer/EEO/Diesel remained stable for more than 15 days. The functional groups analysis showed the stability of the emulsion for Span 80 and Atlox 4916, whereas a change in the absorbance intensity was observed when Atlox 4916 and Zephrym PD3315 were used, indicating stratification.


Assuntos
Biocombustíveis , Éter , Pirólise , Emulsificantes , Éteres , Hexoses , Polietilenoglicóis
9.
Environ Res ; 184: 109311, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32145550

RESUMO

Catalytic co-pyrolysis (CCP) of spent coffee ground (SCG) and cellulose over HZSM-5 and HY was characterized thermogravimetrically, and a catalytic pyrolysis of two samples was conducted using a tandem micro reactor that directly connected with gas chromatography-mass spectrometry. To access the more fundamental investigations on CCP, the effects of the zeolite pore structure, reaction temperature, in-situ/ex-situ reaction mode, catalyst to feedstock ratio, and the SCG and cellulose mixing ratio were experimentally evaluated. The temperature showing the highest thermal degradation rate of cellulose with SCG slightly delayed due to the interactions during the thermolysis of two samples. HZSM-5 in reference to HY produced more aromatic hydrocarbons from CCP. With respect to the reaction temperature, the formation of aromatic hydrocarbons increased with the pyrolytic temperature. Moreover, the in-situ/ex-situ reaction mode, catalyst/feedstock, and cellulose/SCG ratio were optimized to improve the aromatic hydrocarbon yield.


Assuntos
Biocombustíveis , Celulose , Pirólise , Catálise , Café , Temperatura Alta
10.
Environ Res ; 178: 108672, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31450145

RESUMO

Intense efforts have been made to eliminate toxic volatile organic compounds (VOCs) in indoor environments, especially formaldehyde (FA). In this study, the removal performances of gaseous FA using two metal-organic frameworks, MOF-5 and UiO-66-NH2, and two covalent-organic polymers, CBAP-1 (EDA) and CBAP-1 (DETA), along with activated carbon as a conventional reference material, were evaluated. To assess the removal capacity of FA under near-ambient conditions, a series of adsorption experiments were conducted at its concentrations/partial pressures of both low (0.1-0.5 ppm/0.01-0.05 Pa) and high ranges (5-25 ppm/0.5-2.5 Pa). Among all tested materials at the high-pressure region ㅐ (e.g., at 2.5 ppm FA), a maximum adsorption capacity of 69.7 mg g-1 was recorded by UiO-66-NH2. Moreover, UiO-66-NH2 also displayed the best 10% breakthrough volume (BTV10) of 534 L g-1 (0.5 ppm FA) to 2963 L g-1 (0.1 ppm FA). In contrast, at the high concentration test (at 5, 10, and 25 ppm FA), the maximum BTV10 values were observed as: 137 (UiO-66-NH2), 144 (CBAP-1 (DETA)), and 36.8 L g-1 (CBAP-1 (EDA)), respectively. The Langmuir isotherm model was observed to be a better fit of the adsorption data than the Freundlich model under most of the tested conditions. The superiority of UiO-66-NH2 was attributed to the van der Waals interactions between the linkers (framework) and the hydrocarbon "tail" (FA) coupled with interactions between its open metal sites and the FA carbonyl groups. This study demonstrated the good potential of these advanced functional materials toward the practical removal of gaseous FA in indoor environments.


Assuntos
Formaldeído/química , Estruturas Metalorgânicas , Adsorção , Gases , Metais
11.
Environ Res ; 171: 348-355, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30716512

RESUMO

This study employs chicken manure as a feedstock to produce different forms of energy to abate environmental burdens. To achieve ultimate carbon management, the possible utilization of CO2 during pyrolysis of chicken manure was fundamentally investigated. The roles of CO2 in pyrolysis of chicken manure include enhanced thermal cracking and shifting of the carbon distribution via reaction between volatile organic compounds and CO2. The identified roles induced by CO2 were catalytically enhanced because of the inorganic content in the feedstock. The morphology of biochar created from the chicken manure pyrolysis was significantly affected by CO2. For example, a well-developed pore structure was observed in the biochar developed under a CO2 environment; this biochar was used as an effective porous material for biodiesel synthesis.


Assuntos
Biocombustíveis , Dióxido de Carbono , Carvão Vegetal , Esterco , Animais , Galinhas , Solo
12.
Environ Res ; 179(Pt A): 108802, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31629181

RESUMO

The potential use of activated carbon (AC) as an inexpensive and effective alternative sorbent material in thermal desorption is presented and validated for the analysis of aromatic volatile organic compounds (VOCs) such as benzene, toluene, m-xylene, and styrene (BTXS) in air. The optimum desorption conditions of an AC sampling tube (2 mg AC bed) were determined and compared with a commercial three-bed (Carbopack; C + B + X) tube sampler as a reference. The AC sampler exhibited good linearity (R2 > 0.99) and reproducibility (RSE of 2.38 ±â€¯0.21%) for BTXS analysis. The AC tube sampler showed good storability (up to 3 d) and excellent recyclability (up to 50 cycles). An analysis of BTXS in ambient air showed excellent agreement between AC and CBX (bias < 5%). The 1% breakthrough volume values for 2 mg AC, when tested at 100 ppb of benzene as a sole component or in a BTXS mixture, were 10,000 or 5000 L g-1, respectively. The results of this study support the performance of AC as a suitable medium for sampling VOCs as reliable as high-cost commercial sorbent products.


Assuntos
Poluentes Atmosféricos , Carvão Vegetal , Compostos Orgânicos Voláteis , Benzeno , Reprodutibilidade dos Testes
13.
J Environ Manage ; 237: 629-635, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30851591

RESUMO

Chlorhexidine (CHX) is a broad-spectrum antimicrobial, which may pose environmental health risks. This study examined the removal potential and the mechanisms regulating the fate of CHX in activated sludge (AS). Bioreactors inoculated with AS removed 74 ±â€¯8% and 81 ±â€¯6% of CHX at steady state while receiving 0.5 and 1 mg/L CHX, respectively. Analysis of the removal pathways showed that biosorption, rather than biological breakdown or other abiotic losses, largely (>70%) regulated the removal of CHX. 16S rRNA gene-based analysis revealed that CHX selected for Luteolibacter (4.3-10.1-fold change) and Runella (6.2-14.1-fold change) with potential multi-drug resistance mechanisms (e.g., efflux pumps). In contrast, it significantly reduced core members (Comamonadaceae and Flavobacteriaceae) of AS, playing a key role in contaminant removal and floc formation directly associated with the performance of WWTPs (e.g., wastewater effluent quality). Antimicrobial susceptibility testing showed that 0.4-1.3 mg/L of CHX can be sublethal to AS. Our work provided new insights into the fate of CHX in urban waste streams and the potential toxicity and effects on the structure and function of AS, which has practical implications for the management of biological WWTPs treating CHX.


Assuntos
Anti-Infecciosos Locais , Anti-Infecciosos , Clorexidina , RNA Ribossômico 16S , Esgotos
14.
J Environ Manage ; 234: 36-43, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30599328

RESUMO

Demineralization is required in upgrading low-grade coal to serve as an alternative energy resource for the production of fuel and valuable chemicals but generates a large amount of low-grade coal wastewater (LCWW). The objective of this study was to investigate the effects of a co-substrate on an anaerobic membrane bioreactor (AnMBR) treating LCWW. CH4 was not produced during the operation fed by LCWW alone. When yeast wastes (YW) were supplemented, there was a gradual increase in the biodegradability of LCWW, achieving 182 CH4 mL/g COD with 58% COD removal efficiency. The analysis of physicochemical characteristics in the effluent of AnMBR, done by excitation-emission matrix (EEM) and size exclusion chromatography (SEC), showed that the proportion of soluble microbial products (SMPs) and aromatic group with high-molecular weight (>1 kDa) increased. Microbial analysis revealed that the increased dominance of bacteria Comamonas, Methanococcus, and Methanosarcina facilitated biodegradation of LCWW in the presence of YW.


Assuntos
Carvão Mineral , Águas Residuárias , Anaerobiose , Reatores Biológicos , Membranas Artificiais , Metano , Eliminação de Resíduos Líquidos
15.
J Environ Manage ; 234: 138-144, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30616185

RESUMO

To circumvent the adverse impacts arising from an excessive use of fossil fuels, bioenergy and chemical production from a carbon neutral resource (biomass) has drawn considerable attention over the last two decades. Among various technical candidates, fast pyrolysis of biomass has been considered as one of the viable technical routes for converting a carbonaceous material (biomass) into biocrude (bio-oil). In these respects, three biomass samples (i.e., sawdust, empty fruit bunch, and giant Miscanthus) were chosen as a carbon substrate for the pyrolysis process in this study. A pilot-scale circulating fluidized bed reactor was employed for the pyrolysis work, and biocrude from the fast pyrolysis process at 500 °C were characterized because the maximum yield of biocrude (60 wt% of the original sample mass) was achieved at 500 °C. The physico-chemical properties of biocrude were measured by the international standard/protocol (ASTM D7544 and/or EN 16900 test method) to harness biocrude as bioenergy and an initial feedstock for diverse chemicals. All measurements in this study demonstrated that the heating value, moisture content, and ash contents in biocrude were highly contingent on the type of biomass. Moreover, characterization of biocrude in this study significantly suggested that additional unit operations for char and metal removal must be conducted to meet the fuel standard in terms of biocrude as bioenergy.


Assuntos
Biocombustíveis , Pirólise , Biomassa , Temperatura Alta , Óleos de Plantas , Polifenóis
16.
Environ Geochem Health ; 41(4): 1723-1728, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28455818

RESUMO

Lipid derivatization technology-mediated fatty acid profiling studies have been suggested to dissect the contents of lipids in white fat and brown fat tissue. The focus of this study is to profile fatty acid lipidomics in brown adipose tissue and white adipose tissue of mice by derivatizing their lipids into fatty acid methyl esters via in situ transmethylation using a rice husk-derived biochar as porous media. The in situ transmethylation using biochar is advantageous in biological analysis because there was no loss of samples inevitably occurring in the loss of lipid in solvent extraction and purification steps.


Assuntos
Tecido Adiposo Marrom/química , Tecido Adiposo Branco/química , Carvão Vegetal/química , Ácidos Graxos/análise , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Ácidos Graxos/química , Feminino , Lipídeos/química , Masculino , Metilação , Camundongos Endogâmicos C57BL
17.
Environ Res ; 160: 420-448, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29073572

RESUMO

Over the past few decades, diverse chemicals and materials such as mono- and bimetallic nanoparticles, metal oxides, and zeolites have been used for soil and groundwater remediation. Ferrate (FeVIO42-) has been widely employed due to its high-valent iron (VI) oxo compound with high oxidation/reduction potentials. Ferrate has received attention for wide environmental applications including water purification and sewage sludge treatment. Ferrate provides great potential for diverse environmental applications without any environmental problems. Therefore, this paper provides comprehensive information on the recent progress on the use of (FeVIO42-) as a green material for use in sustainable treatment processes, especially for soil and water remediation. We reviewed diverse synthesis recipes for ferrates (FeVIO42-) and their associated physicochemical properties as oxidants, coagulants, and disinfectants for the elimination of a diverse range of chemical and biological species from water/wastewater samples. A summary of the eco-sustainable performance of ferrate(VI) in water remediation is also provided and the future of ferrate(VI) is discussed in this review.


Assuntos
Poluição Ambiental/prevenção & controle , Recuperação e Remediação Ambiental , Água Subterrânea/análise , Ferro/análise , Poluição Química da Água/prevenção & controle , Eliminação de Resíduos Líquidos , Purificação da Água
18.
J Environ Manage ; 227: 329-334, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30199729

RESUMO

A methodology for the synthesis of gasoline-range fuels from carbon neutral resources is introduced. Sorbitol, a sugar-based compound, was employed as a raw material because the compound is readily obtained from cellulose. Gasoline-range hydrocarbons were produced via hydrodeoxygenation (HDO) on zirconium phosphate-supported Pd-bimetallic (Pt-Pd, Ru-Pd, Ni-Pd, Fe-Pd, Co-Pd, W-Pd) catalysts. Among the tested catalysts, the bimetallic W-Pd/ZrP catalyst exhibited the highest yield of gasoline products, peaking at ∼70%. However, with the bimetallic Fe-Pd and Co-Pd catalysts, high-octane gasoline products were made (research octane number (RON) of the products was higher than 100). The Fe-Pd catalyst also showed the highest initial activity for the HDO of sorbitol. This study demonstrates that HDO in the Pd-system is a promising option to produce high-quality gasoline-range hydrocarbons from lignocellulosic biomass.


Assuntos
Gasolina , Paládio , Catálise , Octanos , Sorbitol
19.
Environ Geochem Health ; 40(1): 561-562, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29302891

RESUMO

Unfortunately, in the original publication of the article, Prof. Yong Sik Ok's affiliation was incorrectly published.

20.
Environ Geochem Health ; 40(1): 567, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29302895

RESUMO

Unfortunately, in the original publication of the article, Prof. Yong Sik Ok's affiliation was incorrectly published. The author's affiliation is as follows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA