Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer ; 22(1): 204, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093367

RESUMO

Lung squamous cell carcinoma (LUSC) is associated with high mortality and limited targeted therapies. USP13 is one of the most amplified genes in LUSC, yet its role in lung cancer is largely unknown. Here, we established a novel mouse model of LUSC by overexpressing USP13 on KrasG12D/+; Trp53flox/flox background (KPU). KPU-driven lung squamous tumors faithfully recapitulate key pathohistological, molecular features, and cellular pathways of human LUSC. We found that USP13 altered lineage-determining factors such as NKX2-1 and SOX2 in club cells of the airway and reinforced the fate of club cells to squamous carcinoma development. We showed a strong molecular association between USP13 and c-MYC, leading to the upregulation of squamous programs in murine and human lung cancer cells. Collectively, our data demonstrate that USP13 is a molecular driver of lineage plasticity in club cells and provide mechanistic insight that may have potential implications for the treatment of LUSC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/patologia , Linhagem da Célula , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Proteases Específicas de Ubiquitina
2.
Front Mol Biosci ; 9: 912727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874614

RESUMO

DEAD-Box Helicase 3 X-Linked (DDX3X) is essential for RNA metabolism and participates in various cellular processes involving RNA. DDX3X has been implicated in cancer growth and metastasis. DDX3X is involved in antiviral responses for viral RNAs and contributes to pro- or anti-microbial responses. A better understanding of how human cells regulate innate immune response against the viral "non-self" double-stranded RNAs (dsRNAs) and endogenous viral-like "self" dsRNAs is critical to understanding innate immune sensing, anti-microbial immunity, inflammation, immune cell homeostasis, and developing novel therapeutics for infectious, immune-mediated diseases, and cancer. DDX3X has known for activating the viral dsRNA-sensing pathway and innate immunity. However, accumulating research reveals a more complex role of DDX3X in regulating dsRNA-mediated signaling in cells. Here, we discuss the role of DDX3X in viral dsRNA- or endogenous dsRNA-mediated immune signaling pathways.

3.
Cancers (Basel) ; 15(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36612196

RESUMO

Ubiquitin-specific Peptidase 13 (USP13) is a deubiquitinating enzyme that regulates the stability or function of its substrate. USP13 is highly amplified in human ovarian cancer, and elevated expression of USP13 promotes tumorigenesis and metastasis of ovarian cancer. However, there is little known about USP13 post-translational modifications and their role in ovarian cancer. Here, we found that USP13 is phosphorylated at Thr122 in ovarian cancer cells. Phosphorylated Thr122 (pT122) on endogenous USP13 was observed in most human ovarian cancer cells, and the abundance of this phosphorylation was correlated to the total level of USP13. We further demonstrated that Casein kinase 2 (CK2) directly interacts with and phosphorylates USP13 at Thr122, which promotes the stability of USP13 protein. Finally, we showed that Threonine 122 is important for cell proliferation of ovarian cancer cells. Our findings may reveal a novel regulatory mechanism for USP13, which may lead to novel therapeutic targeting of USP13 in ovarian cancer.

4.
Oncogene ; 41(13): 1974-1985, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35173307

RESUMO

Epithelial ovarian cancer is the most lethal gynecologic malignancy and one of the most common causes of cancer mortality among women worldwide. Ubiquitin-Specific Peptidase 13 (USP13) gene copy is strongly amplified in human epithelial ovarian cancer, and high USP13 expression is correlated with poor survival outcomes. Yet, its pathological contribution to ovarian tumorigenesis remains unknown. We crossed a conditional Usp13 overexpressing knock-in mouse with a conditional knockout of Trp53 and Pten mouse and generated a novel ovarian cancer genetically engineered mouse model (GEMM), which closely recapitulates the genetic changes driving ovarian cancer in humans. Overexpression of USP13 with deletion of Trp53 and Pten in murine ovarian surface epithelium accelerated ovarian tumorigenesis and led to decreased survival in mice. Notably, USP13 greatly enhanced peritoneal metastasis of ovarian tumors with frequent development of hemorrhagic ascites. The primary and metastatic tumors exhibited morphology and clinical behavior similar to human high-grade serous ovarian cancer. Co-inhibition of USP13 and AKT significantly decreased the viability of the primary murine ovarian cancer cells isolated from the GEMM. USP13 also increased the tumorigenic and metastatic abilities of primary murine ovarian cancer cells in a syngeneic mouse study. These findings suggest a critical role of USP13 in ovarian cancer development and reveal USP13 as a potential therapeutic target for ovarian cancer.


Assuntos
Neoplasias Ovarianas , Proteases Específicas de Ubiquitina , Animais , Carcinogênese/genética , Carcinoma Epitelial do Ovário , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Proteases Específicas de Ubiquitina/genética
5.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34549726

RESUMO

Invariant NKT (iNKT) cells are potent immunomodulatory cells that acquire effector function during their development in the thymus. IL-17-producing iNKT cells are commonly referred to as NKT17 cells, and they are unique among iNKT cells to express the heparan sulfate proteoglycan CD138 and the transcription factor RORγt. Whether and how CD138 and RORγt contribute to NKT17 cell differentiation, and whether there is an interplay between RORγt and CD138 expression to control iNKT lineage fate, remain mostly unknown. Here, we showed that CD138 expression was only associated with and not required for the differentiation and IL-17 production of NKT17 cells. Consequently, CD138-deficient mice still generated robust numbers of IL-17-producing RORγt+ NKT17 cells. Moreover, forced expression of RORγt significantly promoted the generation of thymic NKT17 cells, but did not induce CD138 expression on non-NKT17 cells. These results indicated that NKT17 cell generation and IL-17 production were driven by RORγt, employing mechanisms that were independent of CD138. Therefore, our study effectively dissociated CD138 expression from the RORγt-driven molecular pathway of NKT17 cell differentiation.


Assuntos
Diferenciação Celular , Interleucina-17/metabolismo , Células T Matadoras Naturais/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Sindecana-1/genética , Sindecana-1/metabolismo , Animais , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Diferenciação Celular/genética , Feminino , Granzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/fisiologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Fenótipo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Timócitos/metabolismo
6.
Cancer Res ; 81(13): 3607-3620, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33941613

RESUMO

Induction of nucleic acid sensing-mediated type I interferon (IFN) has emerged as a novel approach to activate the immune system against cancer. Here we show that the depletion of DEAD-box RNA helicase 3X (DDX3X) triggers a tumor-intrinsic type I IFN response in breast cancer cells. Depletion or inhibition of DDX3X activity led to aberrant cytoplasmic accumulation of cellular endogenous double-stranded RNAs (dsRNA), which triggered type I IFN production through the melanoma differentiation-associated gene 5 (MDA5)-mediated dsRNA-sensing pathway. Furthermore, DDX3X interacted with dsRNA-editing ADAR1 and dual depletion of DDX3X and ADAR1 synergistically activated the cytosolic dsRNA pathway in breast cancer cells. Loss of DDX3X in mouse mammary tumors enhanced antitumor activity by increasing the tumor-intrinsic type I IFN response, antigen presentation, and tumor infiltration of cytotoxic T and dendritic cells. These findings may lead to the development of a novel therapeutic approach for breast cancer by targeting DDX3X in combination with immune-checkpoint blockade. SIGNIFICANCE: This study elucidates the novel role of DDX3X in regulating endogenous cellular dsRNA homeostasis and type I IFN signaling in breast cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/13/3607/F1.large.jpg.


Assuntos
Neoplasias da Mama/imunologia , RNA Helicases DEAD-box/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , RNA de Cadeia Dupla/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/prevenção & controle , Proliferação de Células , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Humanos , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell Rep ; 27(9): 2548-2557.e4, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141681

RESUMO

Zbtb16 encodes the zinc-finger protein PLZF, which is often used as a lineage marker for innate-like T cells and is specifically required for the generation of invariant natural killer T (iNKT) cells in the thymus. Here, we report that not only PLZF expression itself but also the relative abundance of PLZF proteins plays critical roles in iNKT cell development. Utilizing a Zbtb16 hypomorphic allele, PLZFGFPCre, which produces PLZF proteins at only half of the level of the wild-type allele, we show that decreased PLZF expression results in a significant decrease in iNKT cell numbers, which is further associated with profound alterations in iNKT lineage choices and subset composition. These results document that there is a quantitative aspect of PLZF expression in iNKT cells, demonstrating that the availability of PLZF protein is a critical factor for both effective iNKT cell generation and subset differentiation.


Assuntos
Linfócitos T CD4-Positivos/citologia , Diferenciação Celular , Linhagem da Célula , Células T Matadoras Naturais/imunologia , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Timócitos/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Timócitos/citologia , Timócitos/metabolismo
8.
Immune Netw ; 19(2): e14, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31089441

RESUMO

Invariant NKT (iNKT) cells are a small subset of thymus-generated T cells that produce cytokines to control both innate and adaptive immunity. Because of their very low frequency in the thymus, in-depth characterization of iNKT cells can be facilitated by their enrichment from total thymocytes. Magnetic-activated cell sorting (MACS) of glycolipid antigen-loaded CD1d-tetramer-binding cells is a commonly used method to enrich iNKT cells. Surprisingly, we found that this procedure also dramatically altered the subset composition of enriched iNKT cells. As such, NKT2 lineage cells that express large amounts of the transcription factor promyelocytic leukemia zinc finger were markedly over-represented, while NKT1 lineage cells expressing the transcription factor T-bet were significantly reduced. To overcome this limitation, here, we tested magnetic-activated depletion of CD24+ immature thymocytes as an alternative method to enrich iNKT cells. We found that the overall recovery in iNKT cell numbers did not differ between these 2 methods. However, enrichment by CD24+ cell depletion preserved the subset composition of iNKT cells in the thymus, and thus permitted accurate and reproducible analysis of thymic iNKT cells in further detail.

9.
Front Immunol ; 10: 355, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886618

RESUMO

Naïve and memory T cells co-exist in the peripheral T cell pool, but the cellular mechanisms that maintain the balance and homeostasis of these two populations remain mostly unclear. To address this question, here, we assessed homeostatic proliferation and repopulation kinetics of adoptively transferred naïve and memory T cells in lymphopenic host mice. We identified distinct kinetics of proliferation and tissue-distribution between naïve and memory donor T cells, which resulted in the occupancy of the peripheral T cell pool by mostly naïve-origin T cells in short term (<1 week), but, in a dramatic reversal, by mostly memory-origin T cells in long term (>4 weeks). To explain this finding, we assessed utilization of the homeostatic cytokines IL-7 and IL-15 by naïve and memory T cells. We found different efficiencies of IL-7 signaling between naïve and memory T cells, where memory T cells expressed larger amounts of IL-7Rα but were significantly less potent in activation of STAT5 that is downstream of IL-7 signaling. Nonetheless, memory T cells were superior in long-term repopulation of the peripheral T cell pool, presumably, because they preferentially migrated into non-lymphoid tissues upon adoptive transfer and additionally utilized tissue IL-15 for rapid expansion. Consequently, co-utilization of IL-7 and IL-15 provides memory T cells a long-term survival advantage. We consider this mechanism important, as it permits the memory T cell population to be maintained in face of constant influx of naïve T cells to the peripheral T cell pool and under competing conditions for survival cytokines.


Assuntos
Citocinas/imunologia , Memória Imunológica/imunologia , Transferência Adotiva/métodos , Animais , Sobrevivência Celular/imunologia , Homeostase/imunologia , Interleucina-15/imunologia , Cinética , Ativação Linfocitária/imunologia , Linfopenia/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-7/imunologia , Fator de Transcrição STAT5/imunologia , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA