Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 603(7900): 253-258, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264759

RESUMO

Three-dimensional (3D) imaging sensors allow machines to perceive, map and interact with the surrounding world1. The size of light detection and ranging (LiDAR) devices is often limited by mechanical scanners. Focal plane array-based 3D sensors are promising candidates for solid-state LiDARs because they allow electronic scanning without mechanical moving parts. However, their resolutions have been limited to 512 pixels or smaller2. In this paper, we report on a 16,384-pixel LiDAR with a wide field of view (FoV, 70° × 70°), a fine addressing resolution (0.6° × 0.6°), a narrow beam divergence (0.050° × 0.049°) and a random-access beam addressing with sub-MHz operation speed. The 128 × 128-element focal plane switch array (FPSA) of grating antennas and microelectromechanical systems (MEMS)-actuated optical switches are monolithically integrated on a 10 × 11-mm2 silicon photonic chip, where a 128 × 96 subarray is wire bonded and tested in experiments. 3D imaging with a distance resolution of 1.7 cm is achieved with frequency-modulated continuous-wave (FMCW) ranging in monostatic configuration. The FPSA can be mass-produced in complementary metal-oxide-semiconductor (CMOS) foundries, which will allow ubiquitous 3D sensors for use in autonomous cars, drones, robots and smartphones.

2.
Sci Rep ; 6: 31793, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27549640

RESUMO

We discuss subwavelength-scale semiconductor metal-optic resonators placed on the metal substrate with various top metal plate sizes. Albeit with large optical losses, addition of metal layers converts a leaky semiconductor nano-block into a highly-confined optical cavity. Optically pumped lasing action is observed with the extended top metal layer that can significantly suppress the radiation losses. Careful investigation of self-heating effects during the optical carrier injection process shows the importance of temperature-dependent material properties in the laser rate equation model and the overall laser performances.

3.
Sci Rep ; 6: 24898, 2016 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-27102220

RESUMO

Optical feedback mechanisms are often obtained from well-defined resonator structures fabricated by top-down processes. Here, we demonstrate that two-dimensional networks of metallic nanowires dispersed on the semiconductor slab can provide strong in-plane optical feedback and, thus, form randomly-distributed Fabry-Pérot-type resonators that can achieve multi- or single-mode lasing action in the near infrared wavelengths. Albeit with their subwavelength-scale cross-sections and uncontrolled inter-nanowire distances, a cluster of nearly parallel metal nanowires acts as an effective in-situ reflector for the semiconductor-metal slab waveguide modes for coherent optical feedback in the lateral direction. Fabry-Pérot type resonance can be readily developed by a pair of such clusters coincidentally formed in the solution-processed random nanowire network. Our low-cost and large-area approach for opportunistic random cavity formation would open a new pathway for integrated planar light sources for low-coherence imaging and sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA