Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 14(2): 492-501, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28049295

RESUMO

Heterodimerization of EGFR with HER2 coexpressed in breast cancer (BC) promotes tumor growth, and increased EGFR expression is associated with trastuzumab resistance. Our aim was to construct 64Cu-labeled bispecific radioimmunoconjugates (bsRIC) composed of trastuzumab Fab, which binds HER2 linked through a polyethylene glycol (PEG24) spacer to EGF, and to compare their pharmacokinetic, biodistribution, and tumor imaging characteristics by positron-emission tomography (PET). bsRICs were generated by linking maleimide modified trastuzumab Fab with thiolated EGF through a thioether bond. HER2 and EGFR binding were assessed in vitro in MDA-MB-231 (EGFRmod/HER2low), MDA-MB-468 (EGFRhigh/HER2neg), MDA-MB-231-H2N (EGFRmod/HER2mod), and SKOV3 (EGFRlow/HER2high) cells by competition and saturation cell binding assays to estimate the dissociation constant (Kd). The elimination of the 64Cu-NOTA-trastuzumab Fab-PEG24-EGF bsRICs from the blood of Balb/c mice was compared to monospecific 64Cu-NOTA-trastuzumab Fab and 64Cu-NOTA-EGF. MicroPET/CT imaging was performed in NOD/SCID mice bearing subcutaneous MDA-MB-468, MDA-MB-231/H2N, or SKOV3 human BC xenografts at 24 and 48 h postinjection (p.i.) of bsRICs. Tumor and normal tissue uptake were quantified by biodistribution studies and compared to monospecific agents. The binding of bsRICs to MDA-MB-231 cells was decreased to 24.5 ± 5.2% by excess EGF, while the binding of bsRICs to SKOV3 cells was decreased to 38.6 ± 5.4% by excess trastuzumab Fab, demonstrating specific binding to both EGFR and HER2. 64Cu-labeled bsRICs incorporating the PEG24 spacer were eliminated more slowly from the blood than 64Cu-bsRICs without the PEG spacer and were cleared much more slowly than 64Cu-NOTA-Fab or 64Cu-NOTA-EGF. All three tumor xenografts were visualized by microPET/CT at 24 and 48 h p.i. of bsRICs. Biodistribution studies at 48 h p.i. in NOD/SCID mice with MDA-MB-231/H2N tumors demonstrated significantly greater tumor uptake of 64Cu-NOTA-Fab-PEG24-EGF (4.9 ± 0.4%ID/g) than 64Cu-NOTA-Fab (1.9 ± 0.3%ID/g; P < 0.0001) and 64Cu-NOTA-EGF (0.7 ± 0.2%ID/g; P < 0.0001). Furthermore, preadministration of an excess of trastuzumab Fab or trastuzumab Fab-PEG24-EGF significantly decreased the tumor uptake of 64Cu-NOTA-Fab-PEG24-EGF in SK-OV-3 and MDA-MB-468 xenografts by 4.4-fold (P = 0.0012) and 1.8-fold (P = 0.0031), respectively. 64Cu-labeled bsRICs bound HER2 or EGFR and were taken up specifically in vivo in tumor xenografts expressing one or both receptors. The PEG24 linker prolonged the blood residence time contributing to the higher tumor uptake of the bsRICs than monospecific agents.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Radioisótopos de Cobre/farmacocinética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Imunoconjugados/farmacocinética , Receptor ErbB-2/metabolismo , Trastuzumab/farmacocinética , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Radioisótopos de Cobre/farmacologia , Feminino , Compostos Heterocíclicos/farmacocinética , Compostos Heterocíclicos com 1 Anel , Humanos , Imunoconjugados/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual/fisiologia , Trastuzumab/farmacologia
2.
iScience ; 27(5): 109750, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38711454

RESUMO

HER2 heterogeneity is a challenge for molecular imaging or treating HER2-positive breast cancer (BC). EGFR is coexpressed in some tumors exhibiting HER2 heterogeneity. Bispecific radioimmunoconjugates (bsRICs) that bind HER2 and EGFR were constructed by linking trastuzumab Fab through polyethyleneglycol (PEG24) to EGF. We established s.c. tumors in NOD-SCID mice that homogeneously or heterogeneously expressed HER2 and/or EGFR by the inoculation of HER2-positive/EGFR-negative SK-OV-3 cells, EGFR-positive/HER2-negative MDA-MB-468 cells or mixtures of these cells. [64Cu]Cu-NOTA-trastuzumab Fab-PEG24-EGF were compared to [64Cu]Cu-NOTA-trastuzumab Fab or [64Cu]Cu-NOTA-EGF for the PET imaging of HER2 and/or EGFR-positive tumors. [64Cu]Cu-NOTA-trastuzumab Fab-PEG24-EGF bsRICs imaged tumors expressing HER2 or EGFR or heterogeneously expressing these receptors, while monospecific agents only imaged HER2-or EGFR-positive tumors. Our results indicate that bsRICs labeled with 64Cu are able to exploit receptor heterogeneity for tumor imaging. PET may select patients for radioimmunotherapy with bsRICs complexed to the ß-particle emitter, 177Lu or Auger electron-emitter, 111In in a theranostic approach.

3.
EJNMMI Res ; 14(1): 29, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498285

RESUMO

BACKGROUND: Cancer stem cells play an important role in driving tumor growth and treatment resistance, which makes them a promising therapeutic target to prevent cancer recurrence. Emerging cancer stem cell-targeted therapies would benefit from companion diagnostic imaging probes to aid in patient selection and monitoring response to therapy. To this end, zirconium-89-radiolabeled immunoPET probes that target the cancer stem cell-antigen CD133 were developed using fully human antibody and antibody scFv-Fc scaffolds. RESULTS: ImmunoPET probes [89Zr]-DFO-RW03IgG (CA = 0.7 ± 0.1), [89Zr]-DFO-RW03IgG (CA = 3.0 ± 0.3), and [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) were radiolabeled with zirconium-89 (radiochemical yield 42 ± 5%, 97 ± 2%, 86 ± 12%, respectively) and each was isolated in > 97% radiochemical purity with specific activities of 120 ± 30, 270 ± 90, and 200 ± 60 MBq/mg, respectively. In vitro binding assays showed a low-nanomolar binding affinity of 0.6 to 1.1 nM (95% CI) for DFO-RW03IgG (CA = 0.7 ± 0.1), 0.3 to 1.9 nM (95% CI) for DFO-RW03IgG (CA = 3.0 ± 0.3), and 1.5 to 3.3 nM (95% CI) for DFO-RW03scFv - Fc (C/A = 0.3). Biodistribution studies found that [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) exhibited the highest tumor uptake (23 ± 4, 21 ± 2, and 23 ± 4%ID/g at 24, 48, and 72 h, respectively) and showed low uptake (< 6%ID/g) in all off-target organs at each timepoint (24, 48, and 72 h). Comparatively, [89Zr]-DFO-RW03IgG (CA = 0.7 ± 0.1) and [89Zr]-DFO-RW03IgG (CA = 3.0 ± 0.3) both reached maximum tumor uptake (16 ± 3%ID/g and 16 ± 2%ID/g, respectively) at 96 h p.i. and showed higher liver uptake (10.2 ± 3%ID/g and 15 ± 3%ID/g, respectively) at that timepoint. Region of interest analysis to assess PET images of mice administered [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) showed that this probe reached a maximum tumor uptake of 22 ± 1%ID/cc at 96 h, providing a tumor-to-liver ratio that exceeded 1:1 at 48 h p.i. Antibody-antigen mediated tumor uptake was demonstrated through biodistribution and PET imaging studies, where for each probe, co-injection of excess unlabeled RW03IgG resulted in > 60% reduced tumor uptake. CONCLUSIONS: Fully human CD133-targeted immunoPET probes [89Zr]-DFO-RW03IgG and [89Zr]-DFO-RW03scFv - Fc accumulate in CD133-expressing tumors to enable their delineation through PET imaging. Having identified [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) as the most attractive construct for CD133-expressing tumor delineation, the next step is to evaluate this probe using patient-derived tumor models to test its detection limit prior to clinical translation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA