Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 185(2): 372-86, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25438062

RESUMO

Epithelial barrier function is maintained by tight junction proteins that control paracellular fluid flux. Among these proteins is junctional adhesion molecule A (JAM-A), an Ig fold transmembrane protein. To assess JAM-A function in the lung, we depleted JAM-A in primary alveolar epithelial cells using shRNA. In cultured cells, loss of JAM-A caused an approximately 30% decrease in transepithelial resistance, decreased expression of the tight junction scaffold protein zonula occludens 1, and disrupted junctional localization of the structural transmembrane protein claudin-18. Consistent with findings in other organs, loss of JAM-A decreased ß1 integrin expression and impaired filamentous actin formation. Using a model of mild systemic endoxotemia induced by i.p. injection of lipopolysaccharide, we report that JAM-A(-/-) mice showed increased susceptibility to pulmonary edema. On injury, the enhanced susceptibility of JAM-A(-/-) mice to edema correlated with increased, transient disruption of claudin-18, zonula occludens 1, and zonula occludens 2 localization to lung tight junctions in situ along with a delay in up-regulation of claudin-4. In contrast, wild-type mice showed no change in lung tight junction morphologic features in response to mild systemic endotoxemia. These findings support a key role of JAM-A in promoting tight junction homeostasis and lung barrier function by coordinating interactions among claudins, the tight junction scaffold, and the cytoskeleton.


Assuntos
Barreira Alveolocapilar/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Junções Íntimas/metabolismo , Animais , Barreira Alveolocapilar/citologia , Moléculas de Adesão Celular/genética , Claudinas/genética , Claudinas/metabolismo , Células Epiteliais/patologia , Integrina beta1/genética , Integrina beta1/metabolismo , Camundongos , Ratos , Mucosa Respiratória/citologia , Junções Íntimas/genética , Junções Íntimas/patologia
2.
J Biol Chem ; 288(21): 15229-39, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23558678

RESUMO

The gastrointestinal epithelium functions as an important barrier that separates luminal contents from the underlying tissue compartment and is vital in maintaining mucosal homeostasis. Mucosal wounds in inflammatory disorders compromise the critical epithelial barrier. In response to injury, intestinal epithelial cells (IECs) rapidly migrate to reseal wounds. We have previously observed that a membrane-associated, actin binding protein, annexin A2 (AnxA2), is up-regulated in migrating IECs and plays an important role in promoting wound closure. To identify the mechanisms by which AnxA2 promotes IEC movement and wound closure, we used a loss of function approach. AnxA2-specific shRNA was utilized to generate IECs with stable down-regulation of AnxA2. Loss of AnxA2 inhibited IEC migration while promoting enhanced cell-matrix adhesion. These functional effects were associated with increased levels of ß1 integrin protein, which is reported to play an important role in mediating the cell-matrix adhesive properties of epithelial cells. Because cell migration requires dynamic turnover of integrin-based adhesions, we tested whether AnxA2 modulates internalization of cell surface ß1 integrin required for forward cell movement. Indeed, pulse-chase biotinylation experiments in IECs lacking AnxA2 demonstrated a significant increase in cell surface ß1 integrin that was accompanied by decreased ß1 integrin internalization and degradation. These findings support an important role of AnxA2 in controlling dynamics of ß1 integrin at the cell surface that in turn is required for the active turnover of cell-matrix associations, cell migration, and wound closure.


Assuntos
Anexina A2/metabolismo , Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Integrina beta1/metabolismo , Mucosa Intestinal/metabolismo , Anexina A2/genética , Células CACO-2 , Adesão Celular/fisiologia , Matriz Extracelular/genética , Humanos , Integrina beta1/genética , Transporte Proteico/fisiologia , Proteólise , Cicatrização/fisiologia
3.
Am J Pathol ; 177(3): 1113-21, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20651228

RESUMO

Bleomycin has potent anti-oncogenic properties for several neoplasms, but drug administration is limited by bleomycin-induced lung fibrosis. Inhibition of the renin-angiotensin system has been suggested to decrease bleomycin toxicity, but the efficacy of such strategies remains uncertain and somewhat contradictory. Our hypothesis is that, besides angiotensin II, other substrates of angiotensin-converting enzyme (ACE), such as the tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), play a significant role in controlling fibrosis. We studied bleomycin-induced lung injury in normotensive mice, termed N-KO and C-KO, which have point mutations inactivating either the N- or C-terminal catalytic sites of ACE, respectively. N-KO, but not C-KO mice, have a marked resistance to bleomycin lung injury as assessed by lung histology and hydroxyproline content. To determine the importance of the ACE N-terminal peptide substrate AcSDKP in the resistance to bleomycin injury, N-KO mice were treated with S-17092, a prolyl-oligopeptidase inhibitor that inhibits the formation of AcSDKP. In response to bleomycin injection, S-17092-treated N-KO mice developed lung fibrosis similar to wild-type mice. In contrast, the administration of AcSDKP to wild-type mice reduced lung fibrosis due to bleomycin administration. This study shows that the inactivation of the N-terminal catalytic site of ACE significantly reduced bleomycin-induced lung fibrosis and implicates AcSDKP in the mechanism of protection. These data suggest a possible means to increase tolerance to bleomycin and to treat fibrosing lung diseases.


Assuntos
Bleomicina/farmacologia , Peptidil Dipeptidase A/metabolismo , Fibrose Pulmonar/metabolismo , Análise de Variância , Animais , Sítios de Ligação , Camundongos , Camundongos Transgênicos , Peptidil Dipeptidase A/química , Mutação Puntual , Fibrose Pulmonar/induzido quimicamente , Estatísticas não Paramétricas , Especificidade por Substrato
4.
Biochem Biophys Res Commun ; 397(3): 592-7, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20617560

RESUMO

The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.


Assuntos
Junções Aderentes/metabolismo , Caderinas/biossíntese , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Membrana/biossíntese , Animais , Linhagem Celular , Claudina-1 , Cães , Epitélio/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Humanos , Ocludina , Permeabilidade
5.
Stem Cells Int ; 2010: 868076, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21048855

RESUMO

Bone marrow-derived mesenchymal stem cells (BMDMSC) are emerging as a therapeutic modality in various inflammatory disease states, including acute lung injury (ALI). A hallmark of inflammation, and a consistent observation in patients with ALI, is a perturbation in the systemic redox environment. However, little is known about the effects of BMDMSC on the systemic redox status. The objective of the present study was to determine whether exogenously infused BMDMSC protect against endotoxin-induced oxidation of plasma cysteine (Cys) and glutathione (GSH) redox states. To determine the effect on the redox state if BMDMSC, mice received endotoxin intraperitoneally (1 mg/kg), followed by intravenous infusion of either 5 × 10(5) BMDMSC or an equal volume of saline solution. Control mice received intraperitoneal endotoxin followed by 5 × 10(5) lung fibroblasts given intravenously. Cys, cystine (CySS), GSH, and glutathione disulfide (GSSG) concentrations were determined by HPLC. Results showed sequential preservation of plasma Cys and GSH levels in response to BMDMSC infusion. The data show that BMDMSC infusion leads to a more reducing Cys and GSH redox state. The findings are the first to demonstrate that BMDMSC have antioxidant effects in vivo, and add to our understanding of the systemic effects of BMDMSC in lung injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA