Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0290428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37624862

RESUMO

Pet dogs develop spontaneous diffuse large B cell lymphoma (DLBCL), and veterinary clinical trials have been employed to treat canine DLBCL and to inform clinical trials for their human companions. A challenge that remains is selection of treatment to improve outcomes. The dogs in this study were part of a larger clinical trial evaluating the use of combinations of doxorubicin chemotherapy, anti-CD20 monoclonal antibody, and one of three small molecule inhibitors: KPT-9274, TAK-981, or RV1001. We hypothesized that significant differential expression of genes (DEGs) in the tumors at baseline could help predict which dogs would respond better to each treatment based on the molecular pathways targeted by each drug. To this end, we evaluated gene expression in lymph node aspirates from 18 trial dogs using the NanoString nCounter Canine Immuno-oncology (IO) Panel. We defined good responders as those who relapsed after 90 days, and poor responders as those who relapsed prior to 90 days. We analyzed all dogs at baseline and compared poor responders to good responders, and found increased CCND3 correlated with poor prognosis and increased CD36 correlated with good prognosis, as is observed in humans. There was minimal DEG overlap between treatment arms, prompting separate analyses for each treatment cohort. Increased CREBBP and CDKN1A for KPT-9274, increased TLR3 for TAK-981, and increased PI3Kδ, AKT3, and PTEN, and decreased NRAS for RV1001 were associated with better prognoses. Trends for selected candidate biomarker genes were confirmed via qPCR. Our findings emphasize the heterogeneity in DLBCL, similarities and differences between canine and human DLBCL, and ultimately identify biomarkers that may help guide the choice of chemoimmunotherapy treatment in dogs.


Assuntos
Linfoma Difuso de Grandes Células B , Transcriptoma , Humanos , Cães , Animais , Imunoterapia , Acrilamidas , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética
2.
Mol Immunol ; 68(2 Pt C): 663-70, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26552761

RESUMO

The bitter taste receptor T2R38 has been shown to regulate mucosal innate immune responses in the upper airway epithelium. Furthermore, SNPs in T2R38 influence the sensitivity to 6-n-propylthiouracil (PROP) and are associated with caries risk/protection. However, no study has been reported on the role of T2R38 in the innate immune responses to oral bacteria. We hypothesize that T2R38 regulates oral innate immunity and that this regulation is genotype-specific. Primary gingival epithelial cells carrying three common genotypes, PAV/PAV (PROP super-taster), AVI/PAV (intermediate) and AVI/AVI (non-taster) were stimulated with cariogenic bacteria Streptococcus mutans, periodontal pathogen Porphyromonas gingivalis or non-pathogen Fusobacterium nucleatum. QRT-PCR analyzed T2R38 mRNA, and T2R38-specific siRNA and ELISA were utilized to evaluate induction of hBD-2 (antimicrobial peptide), IL-1α and IL-8 in various donor-lines. Experiments were set up in duplicate and repeated three times. T2R38 mRNA induction in response to S. mutans was highest in PAV/PAV (4.3-fold above the unstimulated controls; p<0.05), while lowest in AVI/AVI (1.2-fold). In PAV/PAV, hBD-2 secretion in response to S. mutans was decreased by 77% when T2R38 was silenced. IL-1α secretion was higher in PAV/PAV compared to AVI/PAV or AVI/AVI with S. mutans stimulation, but it was reduced by half when T2R38 was silenced (p<0.05). In response to P. gingivalis, AVI/AVI showed 4.4-fold increase (p<0.05) in T2R38 expression, whereas the levels in PAV/PAV and AVI/PAV remained close to that of the controls. Secretion levels of IL-1α and IL-8 decreased in AVI/AVI in response to P. gingivalis when T2R38 was silenced (p<0.05), while the changes were not significant in PAV/PAV. Our data suggest that the regulation of gingival innate immunity by T2R38 is genotype-dependent and that the ability to induce a high level of hBD-2 by PAV/PAV carriers may be a reason for protection against caries in this group.


Assuntos
Células Epiteliais/imunologia , Imunidade Inata/imunologia , Imunidade nas Mucosas/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Genótipo , Gengiva/imunologia , Humanos , Interleucina-1alfa/biossíntese , Interleucina-8/biossíntese , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , RNA Interferente Pequeno , Transfecção , beta-Defensinas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA