Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 7(18): 2598-606, 2011 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-21815266

RESUMO

A high-throughput metrology method for measuring the thickness and uniformity of entire large-area chemical vapor deposition-grown graphene sheets on arbitrary substrates is demonstrated. This method utilizes the quenching of fluorescence by graphene via resonant energy transfer to increase the visibility of graphene on a glass substrate. Fluorescence quenching is visualized by spin-coating a solution of polymer mixed with fluorescent dye onto the graphene then viewing the sample under a fluorescence microscope. A large-area fluorescence montage image of the dyed graphene sample is collected and processed to identify the graphene and indicate the graphene layer thickness throughout the entire graphene sample. Using this metrology method, the effect of different transfer techniques on the quality of the graphene sheet is studied. It is shown that small-area characterization is insufficient to truly evaluate the effect of the transfer technique on the graphene sample. The results indicate that introducing a drop of acetone or liquid poly(methyl methacrylate) (PMMA) on top of the transfer PMMA layer before soaking the graphene sample in acetone improves the quality of the graphene dramatically over immediately soaking the graphene in acetone. This work introduces a new method for graphene quantification that can quickly and easily identify graphene layers in a large area on arbitrary substrates. This metrology technique is well suited for many industrial applications due to its repeatability and flexibility.


Assuntos
Grafite/química , Acetona/química , Cristalização , Nanotecnologia/métodos , Tamanho da Partícula , Polimetil Metacrilato/química , Propriedades de Superfície
2.
Nanotechnology ; 22(35): 355701, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21817786

RESUMO

We studied the photodesorption behavior of pristine and nitric acid (HNO(3)) treated graphene layers fabricated by chemical vapor deposition (CVD). The decrease in electrical conductivity and a negative shift of the Dirac point in graphene layers illuminated with ultraviolet light are caused by molecular photodesorption, while the UV illumination does not degrade the carrier mobility of graphene layers. When graphene layers were treated with concentrated HNO(3), the photodesorption-induced current decrease became less significant than for pristine graphene layers. We suggest this is due to the passivation of oxygen-bearing functionalities to CVD grown graphene structural defects by HNO(3) functionalization, which prevents the further absorption of gas molecules. Our results provide a new strategy for stabilizing the electrical performance of CVD grown large-area graphene layers for applications ranging from nanoelectronics to optoelectronics.

3.
Nanoscale ; 4(13): 3807-19, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22538861

RESUMO

Graphene is an allotrope of carbon whose structure is based on one-atom-thick planar sheets of carbon atoms that are densely packed in a honeycomb crystal lattice. Its unique electrical and optical properties raised worldwide interest towards the design and fabrication of future electronic and optical devices with unmatched performance. At the moment, extensive efforts are underway to evaluate the reliability and performance of a number of such devices. With the recent advances in synthesizing large-area graphene sheets, engineers have begun investigating viable methodologies for conducting graphene metrology and quality control at industrial scales to understand a variety of reliability issues including defects, patternability, electrical, and physical properties. This review summarizes the current state of industrial graphene metrology and provides an overview of graphene metrology techniques. In addition, a recently developed large-area graphene metrology technique based on fluorescence quenching is introduced. For each metrology technique, the industrial metrics it measures are identified--layer thickness, edge structure, defects, Fermi level, and thermal conductivity--and a detailed description is provided as to how the measurements are performed. Additionally, the potential advantages of each technique for industrial use are identified, including throughput, scalability, sensitivity to substrate/environment, and on their demonstrated ability to achieve quantified results. The recently developed fluorescence-quenching metrology technique is shown to meet all the necessary criteria for industrial applications, rendering it the first industry-ready graphene metrology technique.

4.
J Biophotonics ; 4(3): 193-205, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20740520

RESUMO

In this paper we introduce a custom scanning near-field optical microscope (SNOM) that simultaneously collects reflection and transmission near-field images along with topography. This dual-optical SNOM uses a bent probe, which allows for axial reflection imaging, accurate surface scanning, and easy identification of topographic artifacts. Using this novel dual-optical SNOM, we image desiccated and non-desiccated human breast epithelial tissue. By comparing the simultaneous SNOM images, we isolate the effects of tissue morphology and variations in refractive indices on the forward- and back-scattering of light from the tissue. We find that the reduction in back-scattering from tissue, relative to the glass slide, is caused by dense packing of the scattering sites in the cytoplasm (morphology) in the desiccated tissue and a thin-film of water adhering to the glass slide (refractive index) in the non-desiccated tissue sample. Our work demonstrates the potential of our customized dual-optical SNOM system for label-free tissue diagnostics.


Assuntos
Mama/patologia , Epitélio/patologia , Aumento da Imagem/métodos , Microscopia de Varredura por Sonda/métodos , Espalhamento de Radiação , Mama/ultraestrutura , Citoplasma/patologia , Citoplasma/ultraestrutura , Epitélio/ultraestrutura , Feminino , Vidro/química , Humanos , Dispositivos Ópticos , Sensibilidade e Especificidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA