Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 12(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37444294

RESUMO

Chromatic variation was examined for its association with flour composition and quality. Carob samples from variable altitudes and genetic backgrounds were milled and assessed for colorimetric parameter L* (lightness) and analyzed for phenols, tannins, antioxidant capacity, soluble carbohydrates (HPLC-RID), organic acids and protein (IC-CD), and volatile organic compounds (VOCs; HS-SPME/GC-MS). Higher altitudes and grafted genotypes yielded lighter-colored flours of higher antioxidant potential, phenols, tannins, sucrose, and malic acid concentrations. VOCs were mainly acids, esters, aldehydes, ketones, and alcohols. Acids were the most abundant and correlated negatively with L*, though correlation for many individual acids was non-significant, including 2-methyl-propanoic acid, widely considered the carob signature aroma (cheesy acidic buttery). The compositional and quality indexing potential of L* is more robust for grafted than non-grafted material, owing putatively to a narrower genetic basis. Antioxidant capacity and concentrations of phenolics, tannins and sucrose correlated positively with L*, indicating increased levels in carob flours sourced from grafted trees at higher altitudes. These flours also have a lower content of reducing sugars, the implication of which in the darkening of carob flour warrants further investigation. Overall, L* constitutes a reliable index for ranking carob flours for key compositional attributes and may be further reinforced by multiple-year data.

2.
Plants (Basel) ; 12(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050095

RESUMO

DNA content is an important trait linked to the evolutionary routes of taxa and often connected to speciation. In the present study, we studied C-values variation across the Cypriot Fabeae gene pool. Several hundred plants (Vicia spp., Lens spp., Pisum spp.) were sampled across Cyprus. Accurate estimates were established by flow cytometry and propidium iodine staining for 155 discrete populations/accessions. A ten-fold variation was detected across lineages with 1C DNA content varying from 1.584 pg for V. cretica (ARI02420) to 13.983 pg for V. faba (ARI00187). In general, flow cytometry was precise for the characterization of species, even though there were instances of genome overlapping across taxa. Most analyses in the current work refer to species that have not been characterized before by flow cytometry (or any other DNA content estimation method). Still, a correlation to C-values previously reported in Kew Plant DNA C-values database was attempted. A high degree of correlation except for V. dalmatica was established. The evaluation of genome size trait in relation with the Fabeae phylogeny, revealed that Pisum and Lens genera were rather homogenous, but an astonishing fluctuation was shown for Vicia spp. Moreover, it was established that genome up- or down-scaling was not directly linked to speciation drivers. The genomic size measurements presented here could deliver extra quality control for the identification and characterization of taxa in germplasm collections, particularly in cases where species share morphological characters.

3.
Front Plant Sci ; 13: 799213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356126

RESUMO

Basil (Ocimum basilicum L.) is a heterogeneous reservoir of bioactive compounds that provide recognized benefits to human health, rendering it a model aromatic herb. Notwithstanding the application of nutritional stress, such as sodium chloride (NaCl) salinity, which mainly affects the primary metabolism, it also triggers adaptive mechanisms that involve the production of bioactive secondary metabolites. Genotype selection and the exogenous application of calcium chloride (CaCl2) help minimize salinity's suppressive effects on growth. In the present study, we hypothesize that the ratio of different salt types may induce differential responses in the function of preharvest factors in hydroponic basil culture. In this perspective, the stock nutrient solution (Control) was supplemented with 12.5 mm NaCl + 8.33 mm CaCl2 (Moderate Mix), 25 mm NaCl (Moderate NaCl), 25 mm NaCl + 16.66 of CaCl2 (High Mix), or 50 mM of NaCl (High NaCl) with the objective of evaluating the different impact of salinity on yield, sensory quality (color and aroma profile), and the accumulation of minerals and bioactive compounds in two successive harvests of green and red basil cultivars. Although more productive (+39.0% fresh weight) than the red one, the green cultivar exhibited higher susceptibility to salinity, especially under the High Mix and High NaCl treatments. The addition of CaCl2 to the High Mix solution reduced the sodium by 70.4% and increased the total polyphenols by 21.5% compared to the equivalent isomolar solution (High NaCl). The crop performance in terms of fresh and dry yield improved for both cultivars at the second cut. Regardless of cultivar and salt treatment, successive harvests also increased the concentration of phenols and vitamin C (29.7 and 61.5%, respectively) while reducing (-6.9%) eucalyptol, the most abundant aromatic compound in both cultivars. Salinity, as well as the mechanical stress induced by cutting, improved the functional quality of basil. However, the productive responses to the conditions imposed in our work once again highlighted the importance of genetic background. Specifically, CaCl2 in the Moderate Mix solution preserved fresh leaf weight in the most stress-sensitive green cultivar.

4.
Plants (Basel) ; 11(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890473

RESUMO

The Adapting Agriculture to Climate Change Project set out to improve the diversity, quantity, and accessibility of germplasm collections of crop wild relatives (CWR). Between 2013 and 2018, partners in 25 countries, heirs to the globetrotting legacy of Nikolai Vavilov, undertook seed collecting expeditions targeting CWR of 28 crops of global significance for agriculture. Here, we describe the implementation of the 25 national collecting programs and present the key results. A total of 4587 unique seed samples from at least 355 CWR taxa were collected, conserved ex situ, safety duplicated in national and international genebanks, and made available through the Multilateral System (MLS) of the International Treaty on Plant Genetic Resources for Food and Agriculture (Plant Treaty). Collections of CWR were made for all 28 targeted crops. Potato and eggplant were the most collected genepools, although the greatest number of primary genepool collections were made for rice. Overall, alfalfa, Bambara groundnut, grass pea and wheat were the genepools for which targets were best achieved. Several of the newly collected samples have already been used in pre-breeding programs to adapt crops to future challenges.

5.
Antioxidants (Basel) ; 10(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466561

RESUMO

Six critical stages corresponding to major morphophysiological events in carob fruit ripening were defined, and changes in the primary and secondary metabolome and in vitro antioxidant capacity were examined in two genotypes collected at low (15 m) and high (510 m) altitudes from genetically identified and georeferenced trees. Soluble carbohydrates were analyzed by HPLC-RI, macro-minerals by ion chromatography coupled to conductivity detection and polyphenols by UHPLC-Q-Orbitrap-HRMS. spectroscopy facilitated assays for condensed tannins and in vitro free-radical scavenging capacity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP). The fruit respiration rate and moisture content declined sharply during the transition from the breaker to green pedicel stage. Sugar accumulation spiked at the onset of fruit coloration and culminated at 498.7 ± 8.4 mg g-1 dry weight (dw) in the late ripe stage, while the ratio of reducing sugars to sucrose decreased from 3.45 ± 0.32 to 0.41 ± 0.02. The total phenolic compounds and condensed tannins declined with ripening, particularly during the transition from the breaker to green pedicel stage. Eighteen polyphenols were identified and quantitated, with catechins and hydrolyzable tannins being dominant until the onset of fruit coloration. The transition to the green pedicel stage signaled a precipitous decline (90.9%) in catechins, hydrolyzable tannins (60.2%) and flavonol glycosides (52.1%) concomitant to the rise in gallic acid, which was putatively fueled by the enzymatic hydrolysis of gallotannins in immature fruit. Catechins, hydrolyzable tannins and flavone glycosides were more abundant at higher altitudes and gallic acid at lower altitudes. An antioxidant capacity was also favored by higher elevations and declined with ripening, particularly after the breaker stage. Correlations with FRAP and DPPH assays were significant for the total phenolic content, condensed tannins, catechins and hydrolyzable tannins. The highest correlation factors were obtained for epigallocatechin-gallate (r = 0.920 and r = 0.900; p < 0.01). Although the sharp drop in hydrolyzable and nonhydrolyzable tannins and catechins compromised the in vitro antioxidant capacity at physiological maturity, it also reduced the astringency and configured a palatable organoleptic fruit profile. These changes unraveled significant episodes in the ripening-related secondary metabolism of the carob fruit. They further highlighted the value of immature carob as a potent source of gallotannins, with putative in vivo anti-inflammatory action, and of catechins beneficial in preventing and protecting against diseases caused by oxidative stress.

6.
Front Nutr ; 8: 789169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977128

RESUMO

Carob powder is increasingly valued as a substitute for cocoa and as a flavor-enhancing component of processed foods. However, little is known about the impact of preharvest factors such as fruit maturity, genotype and altitude on its volatile organic compounds (VOCs) composition. The current study examined the VOCs composition of powder milled from pods of two genotypes cultivated at 15 and 510 m altitude and harvested at six progressive stages of maturity, ranging from fully developed immature green (RS1) to late ripe (RS6). Fifty-six VOCs categorized into acids, esters, aldehydes, ketones, alcohols, furans, and alkanes were identified through HS-SPME GC-MS analysis. Maturity was the most influential factor, followed by altitude and least by genotype. Aldehydes and alcohols correlated positively (r = 0.789; p < 0.001), both accumulated in immature carobs and decreased with progressive ripening, resulting in the attenuation of green grassy aroma. Conversely, acids increased with ripening and dominated the carob volatilome at full maturity, correlating negatively with aldehydes and alcohols (r = -0.835 and r = -0.950, respectively; p < 0.001). The most abundant VOC throughout ripening (17.3-57.7%) was isobutyric acid, responsible for the characteristic cheesy-acidic-buttery aroma of carob powder. The pleasurable aroma detected at the immature stages (RS2 and RS3) was traced to isobutyrate and methyl isobutyrate esters, rendering unripe green carob powder a potential admixture component for improving the aroma of novel food products. Lower altitude favored the accumulation of acids linked to less pleasant aroma, whereas isobutyric acid was more abundant at higher altitude. This constitutes a significant indication that higher altitude enhances the characteristic carob-like aroma and sensory quality of carob powder.

7.
Food Chem ; 358: 129877, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33984656

RESUMO

Rising temperature and solar radiation drive the mobilization and depletion of crown-deposited metabolites harnessed for asparagus spear regeneration during the spring harvest season. We presently examined how successive same-season harvests impact the sensory, nutritive and bioactive composition of select green asparagus genotypes. Soluble carbohydrates were analyzed by HPLC-RI, organic acids and polyphenols by HPLC-DAD and metals by ion chromatography. Higher sugars and lower acids accentuated sweetness and lower polyphenols contributed to reduced astringency at the beginning of the harvest season. This trend was reversed as the season advanced and spear sensory quality was compromised by declining sugars and rising acids; however, functional quality improved as antioxidant capacity increased along with the concentrations of quercetin-3-O-rutinoside (rutin) and ascorbic acid. The compositional changes presently described were uniform across all genotypes examined and thus contribute toward our understanding of seasonal variation in the sensory and functional quality of this acclaimed health-promoting product.


Assuntos
Asparagus/metabolismo , Metaboloma , Agricultura/métodos , Antioxidantes/análise , Ácido Ascórbico/análise , Asparagus/química , Asparagus/crescimento & desenvolvimento , Carboidratos/análise , Cromatografia Líquida de Alta Pressão , Chipre , Glucosídeos/análise , Minerais/análise , Proteínas de Plantas/análise , Polifenóis/análise , Quercetina/análogos & derivados , Quercetina/análise , Metabolismo Secundário , Paladar
8.
Plants (Basel) ; 10(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34451743

RESUMO

Tomato (Solanum lycopersicum L.) is considered one of the most valuable and versatile vegetable crops globally and also serves as a significant model species for fruit developmental biology. Despite its significance, a severe genetic bottleneck and intense selection of genotypes with specific qualitative traits have resulted in the prevalence of a restricted number of (geno)types, also causing a lack of diversity across widespread cultivated types. As a result, the re-emergence of landraces as well as traditional and heirloom varieties is largely acknowledged as a countermeasure to restore phenotypic, phytochemical and genetic diversity while enriching the aroma/taste tomato palette. On those grounds, the Cypriot tomato germplasm was assessed and characterized. Ten landrace accessions were evaluated under greenhouse conditions and data were collected for 24 IPGRI discrete phenotypic traits. Grouping of accessions largely reflected the fruit shape and size; four different fruit types were recorded across accessions (flattened, heart-shaped, rounded and highly rounded). Moreover, a single run panel consisting of ten SSRs was developed and applied in order to genetically characterize 190 Cypriot genotypes and foreign heirloom varieties. Based on genetic indexes it was established that tomato landraces have a rather low level of heterogeneity and genetic variation. Finally, mineral and phytochemical analyses were conducted in order to estimate biochemical attributes (total phenolics, ascorbic acid, lycopene, ß-carotene, total soluble content, titratable acidity) across genotypes; thus, ascertaining that the Cypriot panel has a high nutritional value. Due to the thermo-drought adaptation and tolerance of these genotypes, the current study serves as a roadmap for future breeding efforts in order to incorporate desirable traits or develop novel tomato lines combining resilience and alimentary value.

9.
Foods ; 10(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207882

RESUMO

While imparting gastronomic novelty and sensory delight, microgreens also constitute rudimentary leafy greens packed with nutrients and phytochemicals. As such, they comprise an upcoming class of functional foods. However, apart from bioactive secondary metabolites, microgreens also accumulate antinutritive agents such as nitrate, especially under conducive protected cultivation conditions. The current work examined nutrient deprivation before harvest (DBH), applied by replacing nutrient solution with osmotic water for six and twelve days, as a strategy for reducing microgreen nitrate levels in different species (lettuce, mustard, and rocket). The three species were sown on a peat-based substrate, cultivated in a controlled climate chamber, and harvested 18 days after sowing, when the first two true leaves emerged. DBH impact on major constituents of the secondary metabolome, mineral content, colorimetric, and yield traits was appraised. Nitrate and mineral content were determined through ion chromatography, phenolic composition through UHPLC-Q-Orbitrap HRMS, and carotenoid composition through HPLC-DAD. Nutrient deprivation was effective in reducing nitrate content; however, effective treatment duration differed between species and decline was more precipitous in nitrate hyperaccumulating species such as rocket. Quercetin and kaempferol glycosides were the flavonol glycosides most abundant in brassicaceous microgreens, whereas lettuce microgreens were steeped in caffeoyl quinic acid. DBH interacted with species as it increased the total phenolic content of lettuce, decreased that of rocket, but did not affect mustard. Further research to link changes in phenolic composition to the sensory and in vivo bioactive profile of microgreens is warranted. Notably, brief (≤6 days) DBH can be applied across species with moderate or no impact on the phenolic, carotenoid, and mineral composition of microgreens. Brief DBH applications also have limited impact on microgreens' yield and colorimetric traits hence on the commercial value of the product. They can therefore be applied for reducing microgreen nitrate levels without significantly impacting key secondary metabolic constituents and their potential bioactive role.

10.
Foods ; 10(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068729

RESUMO

Microgreens constitute novel gastronomic ingredients that combine visual, kinesthetic and bioactive qualities. The definition of the optimal developmental stage for harvesting microgreens remains fluid. Their superior phytochemical content against mature leaves underpins the current hypothesis of significant changes in compositional profile during the brief interval of ontogeny from the appearance of the first (S1) to the second true leaf (S2). Microgreens of four brassicaceous genotypes (Komatsuna, Mibuna, Mizuna and Pak Choi) grown under controlled conditions and harvested at S1 and S2 were appraised for fresh and dry yield traits. They were further analyzed for macro- and micromineral content using inductively coupled plasma optical emission spectrometry (ICP-OES), carotenoid content using high-performance liquid chromatography with a diode-array detector (HPLC-DAD), volatile organic compounds using solid-phase microextraction followed by gas chromatography-mass spectrometry (SPME-GC/MS), anthocyanins and polyphenols using liquid chromatography-high resolution-tandem mass spectrometry (LC-MS/MS) with Orbitrap technology and for chlorophyll and ascorbate concentrations, well as antioxidant capacity by spectrophotometry. Analysis of compositional profiles revealed genotype as the principal source of variation for all constituents. The response of mineral and phytochemical composition and of antioxidant capacity to the growth stage was limited and largely genotype-dependent. It is, therefore, questionable whether delaying harvest from S1 to S2 would significantly improve the bioactive value of microgreens while the cost-benefit analysis for this decision must be genotype-specific. Finally, the lower-yielding genotypes (Mizuna and Pak Choi) registered higher relative increase in fresh yield between S1 and S2, compared to the faster-growing and higher-yielding genotypes. Although the optimal harvest stage for specific genotypes must be determined considering the increase in yield against reduction in crop turnover, harvesting at S2 seems advisable for the lower-yielding genotypes.

11.
Foods ; 9(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992938

RESUMO

Aqueous extraction of carob kibbles is the fundamental step in the production of carob juice and carob molasses. Improving the theoretical yield in sugars during organic solvent-free aqueous extraction is of prime interest to the food industry. Collateral extraction of phenolics, however, must be monitored as it influences the sensory and functional profile of carob juice. We presently examined the impact of source material, kibble size, temperature, and duration on the efficiency of extracting sugars and phenolics aqueously by conventional heat-assisted (HAE) and ultrasound-assisted (UAE) methods. Source material was the most influential factor determining the concentration of phenolics extracted by either method. Source material also influenced the relative proportions of sucrose, glucose, and fructose, which may impact the perceived sweetness of the juice. Kibble size (medium size M = 9-13 mm; powder size P = 1-4 mm) was more influential with UAE than HAE for both sugars and phenolics but was rendered less influential with prolonged UAE duration. Increasing HAE temperature (from 25 °C to 75 °C) favored the extraction of phenolics over sugars; however, prolonging extraction at 25 °C improved sugar yield without excessive yield in phenolics. Disproportionate extraction of phenolics over sugars limits the use of heat-assisted extraction to improve sugar yield in carob juice production and may shift the product's sensory profile toward astringency. Prolonged extraction at near ambient temperature can, however, improve sugar yield, keeping collateral extraction of phenolics low. Ultrasound agitation constitutes an effective means of extracting sugars from powder-size kibbles. Industrial application of both methodologies depends on the targeted functional and sensory properties of carob juice.

12.
Front Plant Sci ; 11: 612376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519870

RESUMO

Carob is a predominantly rainfed tree crop of high nutritive value and a long history of adaptation to the edaphoclimatic stress conditions of the Mediterranean. However, declining attention to the carob tree in recent decades has aggravated genetic erosion. The extant in situ germplasm varies both in terms of pod morphology and composition, reflecting the genetic and physiological divide chiefly among grafted and non-grafted material, and possibly the impact of variable agro-environments. Accordingly, the present study aimed to establish a systematic categorization of the genetic and phenotypic diversity encountered across carob germplasm identified in situ throughout Cyprus, a historical center of production and genetic diversity for the species. Linking pod morphology, primary and secondary metabolite profiles with genotyped source material originating in different agro-environments and crop seasons would provide a framework for interpreting (a) the interaction of these factors in configuring carob pod physicochemical constitution, and (b) the relative stability of phenotypic traits against environmental and seasonal variation. Microsatellite analysis discriminated 36 genotypes out of the 124 trees located in nine traditional agro-environmental zones and revealed low genetic diversity within the grafted germplasm. Two landraces were identified: "Tillyria," which is widespread and predominant, and "Kountourka," which is mainly localized to the northeastern peninsula of Karpasia. Morphological traits, such as seeds-to-pod weight ratio, pod width and thickness were principally under genetic control. Contrarily, compositional traits, particularly total phenolic content-including condensed tannins, in vitro antioxidant capacity and to a lesser extent gallic acid, organic acids and minerals were under agro-environmental control. Agro-environmental zone also modulated principally fructose and glucose; sucrose was modulated equally by genotype and agro-environment, while total sugars were under genetic control. Statistically significant differences between seasons were detected for all traits except for the seeds-to-pod weight ratio, pod length and width. Hierarchical cluster analysis corroborates that Cyprus may be divided into two major agro-environmental zones modulating the compositional properties of the carob pulp. The present study provides a comprehensive insight into the extant carob genetic resources of Cyprus and advances our understanding of how genetic, agro-environmental and seasonal factors interact in shaping carob pod morphology and composition.

13.
PLoS One ; 14(10): e0224255, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31661501

RESUMO

Genetic characterization enhances the development of rational conservation strategies and the utilization of germplasm to plant breeding programs. In the present study, 19 microsatellite markers were employed to evaluate the genetic diversity and the genetic affiliations across 20 Cypriot durum wheat (Triticum turgidum L. subsp. durum) landraces, 13 landraces from the broader Mediterranean basin and 22 modern varieties. Cluster analysis depicted a clear separation among modern varieties and landraces, regardless of their origin. Landraces presented the highest genetic variation (average discriminating power of 0.89) and a high number of private alleles (131) was detected; underlying the unique genetic mark-up of this genepool. AMOVA revealed that the highest variability was detected within the landraces originating from Cyprus and landraces from the broader Mediterranean basin. The Cypriot landrace 'Kyperounda' was selected for further evaluation of its' intra-genetic variation and it was determined that genetic diversity was higher in accessions conserved as sublines (He 0.643-0.731) than bulks (He 0.384-0.469). Bayesian analysis revealed substantial admixture within 'Kyperounda' accessions, depicted also by Principal Coordinate Analysis. The findings of the current manuscript emphasize that high intra-genetic diversity is retained when landraces are conserved as sublines in ex situ collections, while landraces that are conserved as bulks have a higher risk of bottleneck. Hence, a more exhausting diversity evaluation is needed in order to fully utilize landraces in breeding schemes and to prevent the loss of genetic variation.


Assuntos
Repetições de Microssatélites/genética , Melhoramento Vegetal/métodos , Triticum/genética , Alelos , Teorema de Bayes , Frequência do Gene/genética , Marcadores Genéticos/genética , Variação Genética/genética , Genótipo , Desequilíbrio de Ligação , Fenótipo , Filogenia
14.
Plant Divers ; 41(2): 94-104, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31193152

RESUMO

In situ conservation is widely considered a primary conservation strategy. Plant translocation, specifically, represents an important tool for reducing the extinction risk of threatened species. However, thus far, few documented translocations have been carried out in the Mediterranean islands. The Care-Mediflora project, carried out on six Mediterranean islands, tackles both short- and long-term needs for the insular endangered plants through in situ and ex situ conservation actions. The project approach is based on using ex situ activities as a tool to improve in situ conservation of threatened plant species. Fifty island plants (representing 45 taxa) were selected for translocations using common criteria. During the translocations, several approaches were used, which differed in site selection method, origin of genetic material, type of propagative material, planting method, and more. Although only preliminary data are available, some general lessons can be learned from the experience of the Care-Mediflora project. Among the factors restricting the implementation of translocations, limited financial resources appear to be the most important. Specific preliminary management actions, sometimes to be reiterated after translocation, increase the overall cost, but often are necessary for translocation success. Translocation using juvenile/reproductive plants produces better results over the short term, although seeds may provide good results over the long run (to be assessed in the future). Regardless, plant translocation success can only be detected over long periods; therefore, proper evaluation of plant translocations requires a long-term monitoring protocol. Care-Mediflora project represents the first attempt to combine the existing approaches in a common plant conservation strategy specifically focusing on the Mediterranean islands.

15.
PLoS One ; 13(3): e0193885, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29529086

RESUMO

Avena ventricosa Balansa ex Coss. is considered the C-genome donor of the cultivated hexaploid oat and is a 'priority' species for conservation, since it has limited geographic distribution and the only recorded populations in Europe are present in Cyprus. The current study attempts to characterize the genetic structure and fragmentation of the species via the application of genotypic markers. It was revealed that the genetic variety was mainly allocated among the populations collected, since clustering obtained was according to the geographic origin of the samples and the habitat. Species distribution modeling showed that the most important climatic variable defining A. ventricosa distribution is the mean diurnal temperature. Furthermore, significant association of the genetic structure to environmental variables was detected; overall, a negative association to precipitation was confirmed, while significant correlations of genetic structure and the temperature at the time of anthesis and germination were established. The safeguarding of this valuable genetic resource is discussed.


Assuntos
Avena/genética , Variação Genética , Dispersão Vegetal , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Clima , Conservação dos Recursos Naturais , Chipre , DNA de Plantas , Ecossistema , Genoma de Planta , Repetições de Microssatélites , Modelos Biológicos , Poliploidia
16.
Front Plant Sci ; 8: 1114, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694819

RESUMO

There is growing interest for using Spectral Vegetation Indices (SVI) derived by Unmanned Aerial Vehicle (UAV) imagery as a fast and cost-efficient tool for plant phenotyping. The development of such tools is of paramount importance to continue progress through plant breeding, especially in the Mediterranean basin, where climate change is expected to further increase yield uncertainty. In the present study, Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR) and Green Normalized Difference Vegetation Index (GNDVI) derived from UAV imagery were calculated for two consecutive years in a set of twenty durum wheat varieties grown under a water limited and heat stressed environment. Statistically significant differences between genotypes were observed for SVIs. GNDVI explained more variability than NDVI and SR, when recorded at booting. GNDVI was significantly correlated with grain yield when recorded at booting and anthesis during the 1st and 2nd year, respectively, while NDVI was correlated to grain yield when recorded at booting, but only for the 1st year. These results suggest that GNDVI has a better discriminating efficiency and can be a better predictor of yield when recorded at early reproductive stages. The predictive ability of SVIs was affected by plant phenology. Correlations of grain yield with SVIs were stronger as the correlations of SVIs with heading were weaker or not significant. NDVIs recorded at the experimental site were significantly correlated with grain yield of the same set of genotypes grown in other environments. Both positive and negative correlations were observed indicating that the environmental conditions during grain filling can affect the sign of the correlations. These findings highlight the potential use of SVIs derived by UAV imagery for durum wheat phenotyping under low yielding Mediterranean conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA