Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36519840

RESUMO

SUMMARY: We present vembrane as a command line variant call format (VCF)/binary call format (BCF) filtering tool that consolidates and extends the filtering functionality of previous software to meet any imaginable filtering use case. Vembrane exposes the VCF/BCF file type specification and its inofficial extensions by the annotation tools VEP and SnpEff as Python data structures. vembrane filter enables filtration by Python expressions, requiring only basic knowledge of the Python programming language. vembrane table allows users to generate tables from subsets of annotations or functions thereof. Finally, it is fast, by using pysam and relying on lazy evaluation. AVAILABILITY AND IMPLEMENTATION: Source code and installation instructions are available at github.com/vembrane/vembrane (doi: 10.5281/zenodo.7003981). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Variação Genética , Transtornos Mentais , Humanos , Software , Linguagens de Programação
3.
Clin Epigenetics ; 16(1): 13, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229153

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis. It is marked by extraordinary resistance to conventional therapies including chemotherapy and radiation, as well as to essentially all targeted therapies evaluated so far. More than 90% of PDAC cases harbor an activating KRAS mutation. As the most common KRAS variants in PDAC remain undruggable so far, it seemed promising to inhibit a downstream target in the MAPK pathway such as MEK1/2, but up to now preclinical and clinical evaluation of MEK inhibitors (MEKi) failed due to inherent and acquired resistance mechanisms. To gain insights into molecular changes during the formation of resistance to oncogenic MAPK pathway inhibition, we utilized short-term passaged primary tumor cells from ten PDACs of genetically engineered mice. We followed gain and loss of resistance upon MEKi exposure and withdrawal by longitudinal integrative analysis of whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and mass spectrometry data. RESULTS: We found that resistant cell populations under increasing MEKi treatment evolved by the expansion of a single clone but were not a direct consequence of known resistance-conferring mutations. Rather, resistant cells showed adaptive DNA hypermethylation of 209 and hypomethylation of 8 genomic sites, most of which overlap with regulatory elements known to be active in murine PDAC cells. Both DNA methylation changes and MEKi resistance were transient and reversible upon drug withdrawal. Furthermore, MEKi resistance could be reversed by DNA methyltransferase inhibition with remarkable sensitivity exclusively in the resistant cells. CONCLUSION: Overall, the concept of acquired therapy resistance as a result of the expansion of a single cell clone with epigenetic plasticity sheds light on genetic, epigenetic and phenotypic patterns during evolvement of treatment resistance in a tumor with high adaptive capabilities and provides potential for reversion through epigenetic targeting.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Metilação de DNA , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , DNA/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Linhagem Celular Tumoral , Mutação
4.
Nat Med ; 30(6): 1602-1611, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38689060

RESUMO

Antibodies targeting the immune checkpoint molecules PD-1, PD-L1 and CTLA-4, administered alone or in combination with chemotherapy, are the standard of care in most patients with metastatic non-small-cell lung cancers. When given before curative surgery, tumor responses and improved event-free survival are achieved. New antibody combinations may be more efficacious and tolerable. In an ongoing, open-label phase 2 study, 60 biomarker-unselected, treatment-naive patients with resectable non-small-cell lung cancer were randomized to receive two preoperative doses of nivolumab (anti-PD-1) with or without relatlimab (anti-LAG-3) antibody therapy. The primary study endpoint was the feasibility of surgery within 43 days, which was met by all patients. Curative resection was achieved in 95% of patients. Secondary endpoints included pathological and radiographic response rates, pathologically complete resection rates, disease-free and overall survival rates, and safety. Major pathological (≤10% viable tumor cells) and objective radiographic responses were achieved in 27% and 10% (nivolumab) and in 30% and 27% (nivolumab and relatlimab) of patients, respectively. In 100% (nivolumab) and 90% (nivolumab and relatlimab) of patients, tumors and lymph nodes were pathologically completely resected. With 12 months median duration of follow-up, disease-free survival and overall survival rates at 12 months were 89% and 93% (nivolumab), and 93% and 100% (nivolumab and relatlimab). Both treatments were safe with grade ≥3 treatment-emergent adverse events reported in 10% and 13% of patients per study arm. Exploratory analyses provided insights into biological processes triggered by preoperative immunotherapy. This study establishes the feasibility and safety of dual targeting of PD-1 and LAG-3 before lung cancer surgery.ClinicalTrials.gov Indentifier: NCT04205552 .


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia Neoadjuvante , Nivolumabe , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Nivolumabe/uso terapêutico , Nivolumabe/administração & dosagem , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Proteína do Gene 3 de Ativação de Linfócitos , Adulto , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Antígenos CD , Idoso de 80 Anos ou mais
5.
Bull Math Biol ; 74(4): 908-34, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22057950

RESUMO

Using optimal control theory as the basic theoretical tool, we investigate the efficacy of different antibiotic treatment protocols in the most exacting of circumstances, described as follows. Viewing a continuous culture device as a proxy for a much more complex host organism, we first inoculate the device with a single bacterial species and deem this the 'commensal' bacterium of our host. We then force the commensal to compete for a single carbon source with a rapidly evolving and fitter 'pathogenic bacterium', the latter so-named because we wish to use a bacteriostatic antibiotic to drive the pathogen toward low population densities. Constructing a mathematical model to mimic the biology, we do so in such a way that the commensal would be eventually excluded by the pathogen if no antibiotic treatment were given to the host or if the antibiotic were over-deployed. Indeed, in our model, all fixed-dose antibiotic treatment regimens will lead to the eventual loss of the commensal from the host proxy. Despite the obvious gravity of the situation for the commensal bacterium, we show by example that it is possible to design drug deployment protocols that support the commensal and reduce the pathogen load. This may be achieved by appropriately fluctuating the concentration of drug in the environment; a result that is to be anticipated from the theory optimal control where bang-bang solutions may be interpreted as intermittent periods of either maximal and minimal drug deployment. While such 'antibiotic pulsing' is near-optimal for a wide range of treatment objectives, we also use this model to evaluate the efficacy of different antibiotic usage strategies to show that dynamically changing antimicrobial therapies may be effective in clearing a bacterial infection even when every 'static monotherapy' fails.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/microbiologia , Modelos Biológicos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Humanos , Metagenoma , Seleção Genética
6.
Nat Commun ; 12(1): 6744, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795237

RESUMO

Accurate single cell mutational profiles can reveal genomic cell-to-cell heterogeneity. However, sequencing libraries suitable for genotyping require whole genome amplification, which introduces allelic bias and copy errors. The resulting data violates assumptions of variant callers developed for bulk sequencing. Thus, only dedicated models accounting for amplification bias and errors can provide accurate calls. We present ProSolo for calling single nucleotide variants from multiple displacement amplified (MDA) single cell DNA sequencing data. ProSolo probabilistically models a single cell jointly with a bulk sequencing sample and integrates all relevant MDA biases in a site-specific and scalable-because computationally efficient-manner. This achieves a higher accuracy in calling and genotyping single nucleotide variants in single cells in comparison to state-of-the-art tools and supports imputation of insufficiently covered genotypes, when downstream tools cannot handle missing data. Moreover, ProSolo implements the first approach to control the false discovery rate reliably and flexibly. ProSolo is implemented in an extendable framework, with code and usage at: https://github.com/prosolo/prosolo.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única/métodos , Software , Técnicas Genéticas , Genômica/métodos , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
7.
Genome Biol ; 21(1): 31, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033589

RESUMO

The recent boom in microfluidics and combinatorial indexing strategies, combined with low sequencing costs, has empowered single-cell sequencing technology. Thousands-or even millions-of cells analyzed in a single experiment amount to a data revolution in single-cell biology and pose unique data science problems. Here, we outline eleven challenges that will be central to bringing this emerging field of single-cell data science forward. For each challenge, we highlight motivating research questions, review prior work, and formulate open problems. This compendium is for established researchers, newcomers, and students alike, highlighting interesting and rewarding problems for the coming years.


Assuntos
Ciência de Dados/métodos , Genômica/métodos , RNA-Seq/métodos , Análise de Célula Única/métodos , Animais , Humanos
8.
J R Soc Interface ; 9(75): 2488-502, 2012 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22628215

RESUMO

Medical and pharmacological communities have long searched for antimicrobial drugs that increase their effect when used in combination, an interaction known as synergism. These drug combinations, however, impose selective pressures in favour of multi-drug resistance and as a result, the benefit of synergy may be lost after only a few bacterial generations. Furthermore, there is experimental evidence that antibiotic treatment can disrupt colonization resistance by shifting the balance between enteropathogenic and commensal bacteria in favour of the pathogens, with the potential to increase the risk of infections. So, we ask, what is the best way of using synergistic drugs? We pose an evolutionary model of commensal and pathogenic bacteria competing in a continuous culture device for a single limiting carbon source under the effect of two bacteriostatic and synergistic antibiotics. This model allows us to evaluate the efficacy of different drug deployment strategies and, using ideas from optimal control theory, to understand whether there are circumstances in which other types of therapy might be favoured over those based on fixed-dose multi-drug combinations. Our main result can be stated thus: the optimal deployment of synergistic antibiotics to remove a pathogen in the presence of commensal bacteria in our model system occurs not in combination, but by deploying them sequentially.


Assuntos
Antibacterianos/administração & dosagem , Infecções Bacterianas/tratamento farmacológico , Modelos Biológicos , Rifampina/administração & dosagem , Reatores Biológicos/microbiologia , Resistência a Múltiplos Medicamentos , Sinergismo Farmacológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA