Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 56(5): 500-513, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36126286

RESUMO

BACKGROUND/AIMS: Mercury (Hg) is a heavy metal widespread in all environmental compartments as one of the most hazardous pollutants. Human exposure to this natural element is detrimental for several cellular types including erythrocytes (RBC) that accumulate Hg mainly bound to the SH groups of different cellular components, including protein cysteine residues. The cellular membrane represents a major target of Hg-induced damage in RBC with loss of physiological phospholipid asymmetry, due to phosphatidylserine (PS) exposure to the external membrane leaflet. To investigate Hg-induced cytotoxicity at the molecular level, the possible interaction of this heavy metal with RBC membrane proteins was investigated. Furthermore, Hg-induced alterations in band 3 protein (B3p) transport function, PS-exposing macrovesicle (MVs) formation and morphological changes were assessed. METHODS: For this aim, human RBC were treated in vitro with different HgCl2 concentrations (range 10-40 µM) and the electrophoretic profile of membrane proteins as well as the expression levels of Ankyrin and Flottilin-2 evaluated by SDS-PAGE and Western blot, respectively. The effect of alterations in these proteins on RBC morphology was evaluated by digital holographic microscopy and anionic transport efficiency of B3p was evaluated as sulphate uptake. Finally, PS- bearing MVs were quantified by annexin-V binding using FACS analysis. RESULTS: Findings presented in this paper indicate that RBC exposure to HgCl2 induces modifications in the electrophoretic profile of membrane protein fraction. Furthermore, our study reveals the Hg induced alterations of specific membrane proteins, such as Ankyrin, a protein essential for membrane-cytoskeleton linkage and Flotillin-2, a major integral protein of RBC lipid rafts, likely responsible for decreased membrane stability and increased fragmentations. Accordingly, under the same experimental conditions, RBC morphological changes and PS-bearing MVs release are observed. Finally, RBC treatment significantly affects the B3p-mediated anionic transport, that we report reduced upon HgCl2 treatment in a dose dependent manner. CONCLUSION: Altogether, the findings reported in this paper confirm that RBC are particularly vulnerable to Hg toxic effect and provide new insight in the Hg-induced protein modification in human RBC affecting the complex biological system of cellular membrane. In particular, Hg could induce dismantle of vertical cohesion between the plasma membrane and cytoskeleton as well as destabilization of lateral linkages of functional domains. Consequently, decreased membrane deformability could impair RBC capacity to deal with the shear forces in the circulation increasing membrane fragmentations. Furthermore, findings described in this paper have also significant implication in RBC physiology, particularly related to gas exchanges.


Assuntos
Poluentes Ambientais , Mercúrio , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Anquirinas/metabolismo , Anquirinas/farmacologia , Anexina A5/metabolismo , Cisteína/metabolismo , Eritrócitos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Mercúrio/metabolismo , Mercúrio/toxicidade , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo , Sulfatos/metabolismo
2.
Blood Transfus ; 21(4): 277-288, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36346887

RESUMO

BACKGROUND: The quality of red blood cells (RBCs) stored in red cell concentrates (RCCs) is influenced by processing, storage and donor characteristics, and can have a clinical impact on transfused patients. To evaluate RBC properties and their potential impact in a transfusion setting, a simple in vitro-transfusional model has been developed. MATERIALS AND METHODS: Transfusion was simulated by mixing a washed RBC pool from two male-derived RCCs stored at 4°C with a pool of 15 male-derived fresh frozen plasma (FFP) units, representing the recipient, at a hematocrit (HCT) of 30% ("control" setting) or 5% (alternative model). The mixtures were incubated at 37°C, 5% of CO2 up to 48 h. Different metabolites, hemolysis and microvesicles (MVs) were quantified at several incubation times and RBC-morphology changes and deformability after incubation. For each model, biological triplicates have been investigated with RCCs at storage days 2 and 43. RESULTS: The 5%-HCT model restored the 2,3-DPG level and maintained the ATP level. Furthermore, glucose consumption and corresponding lactate production were increased in the 5%- vs the 30%-HCT condition. Lower hemolysis was observed with 5%-HCT, but only at day 2. However, morphological analysis by digital holographic microscopy (DHM) revealed a decreased fraction of discocytes at 5% rather than at 30% of HCT at storage day 2 but at day 43, the trend was inverted. Concordantly, RBCs incubated at 5% of HCT were more deformable than at 30% at day 43 (p<0.0001). DISCUSSION: Higher metabolic activity of RBCs in the 5%-HCT condition was promoted by a higher glucose availability and limited cell-waste accumulation. The conditions of the new proposed model thus enabled rejuvenation of RBCs and maintained them in a physiological-close state in contrast to the 30%-HCT model. It may be used as a first approach to evaluate e.g., the impact of donor and recipient characteristics on RBC properties.


Assuntos
Eritrócitos , Hemólise , Humanos , Masculino , Hematócrito , Transfusão de Sangue , Preservação de Sangue , Glucose/farmacologia
3.
Blood Transfus ; 19(4): 300-308, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32955427

RESUMO

BACKGROUND: γ-irradiation is used to treat red blood cell (RBC) concentrates (RCCs) transfused to immunosuppressed patients. This treatment damages RBCs and increases storage lesions. Several studies have shown the beneficial effect of reducing O2 content during RBC storage. The present research work investigated the effect of γ-irradiation on RCCs stored under normal and hypoxia/hypocapnia conditions. MATERIALS AND METHODS: O2 concentration (measured as oxyhaemoglobin fraction, sO2) and ABO-matched RCCs from whole blood donations, leukoreduced and prepared in phosphate, adenine, glucose, guanosine, saline and mannitol (PAGGSM) were pooled and split in two identical RCCs within 24 h post donation. One bag (Hx) was submitted to O2 and CO2 adsorption for 3 h on an orbital shaker at 22±2 °C and then transferred to a storage bag impermeable to gas. The other bag (Ctrl) was left as it was. The two bags were then stored at 4 °C. γ-irradiation (25 Gy) was applied at day 2 or 14, and the RCCs were stored until day 43. Different parameters (metabolites, haemolysis, morphology) were measured. RESULTS: Starting sO2 values were 63.7±18.4% (n=12) in Ctrl and 20.8±9.8% (n=12) in Hx bags, and reached 90.8±9.1% and 6.6±5.9% at day 43, respectively. As expected, an increase in glycolysis rate was observed after deoxygenation. Extracellular potassium concentrations were identical and reached around 70 mM at expiry with an irradiation-dependent kinetic release. No difference in haemolysis was observed after irradiation on day 2 in either group (<0.40%, p>0.9999). When irradiated at day 14, haemolysis was lower (p=0.033) in RCCs under hypoxia at the end of storage (day 28, 0.67±0.16%) compared to control (1.06±0.33%). Percentages of spherocytes were lower under hypoxia. DISCUSSION: The storage under hypoxia provided equivalent storage when RCCs were irradiated at day 2 and was advantageous when irradiated at day 14. In summary, O2-depletion of RCCs enable a better storage of RBCs, particularly when late irradiation is applied.


Assuntos
Preservação de Sangue , Hipocapnia , Eritrócitos , Hemólise , Humanos , Hipóxia
4.
Metabolites ; 10(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486030

RESUMO

After blood donation, the red blood cells (RBCs) for transfusion are generally isolated by centrifugation and then filtrated and supplemented with additive solution. The consecutive changes of the extracellular environment participate to the occurrence of storage lesions. In this study, the hypothesis is that restoring physiological levels of uric and ascorbic acids (major plasmatic antioxidants) might correct metabolism defects and protect RBCs from the very beginning of the storage period, to maintain their quality. Leukoreduced CPD-SAGM RBC concentrates were supplemented with 416 µM uric acid and 114 µM ascorbic acid and stored during six weeks at 4 °C. Different markers, i.e., haematological parameters, metabolism, sensitivity to oxidative stress, morphology and haemolysis were analyzed. Quantitative metabolomic analysis of targeted intracellular metabolites demonstrated a direct modification of several metabolite levels following antioxidant supplementation. No significant differences were observed for the other markers. In conclusion, the results obtained show that uric and ascorbic acids supplementation partially prevented the metabolic shift triggered by plasma depletion that occurs during the RBC concentrate preparation. The treatment directly and indirectly sustains the antioxidant protective system of the stored RBCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA