Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Nature ; 620(7974): 521-524, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495696

RESUMO

Boyle's 1662 observation that the volume of a gas is, at constant temperature, inversely proportional to pressure, offered a prototypical example of how an equation of state (EoS) can succinctly capture key properties of a many-particle system. Such relationships are now cornerstones of equilibrium thermodynamics1. Extending thermodynamic concepts to far-from-equilibrium systems is of great interest in various contexts, including glasses2,3, active matter4-7 and turbulence8-11, but is in general an open problem. Here, using a homogeneous ultracold atomic Bose gas12, we experimentally construct an EoS for a turbulent cascade of matter waves13,14. Under continuous forcing at a large length scale and dissipation at a small one, the gas exhibits a non-thermal, but stationary, state, which is characterized by a power-law momentum distribution15 sustained by a scale-invariant momentum-space energy flux16. We establish the amplitude of the momentum distribution and the underlying energy flux as equilibrium-like state variables, related by an EoS that does not depend on the details of the energy injection or dissipation, or on the history of the system. Moreover, we show that the equations of state for a wide range of interaction strengths and gas densities can be empirically scaled onto each other. This results in a universal dimensionless EoS that sets benchmarks for the theory and should also be relevant for other turbulent systems.

2.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38413231

RESUMO

Fluctuations in brain activity alter how we perceive our body and generate movements but have not been investigated in functional whole-body behaviors. During reactive balance, we recently showed that evoked brain activity is associated with the balance ability in young individuals. Furthermore, in PD, impaired whole-body motion perception in reactive balance is associated with impaired balance. Here, we investigated the brain activity during the whole-body motion perception in reactive balance in young adults (9 female, 10 male). We hypothesized that both ongoing and evoked cortical activity influences the efficiency of information processing for successful perception and movement during whole-body behaviors. We characterized two cortical signals using electroencephalography localized to the SMA: (1) the "N1," a perturbation-evoked potential that decreases in amplitude with expectancy and is larger in individuals with lower balance function, and (2) preperturbation ß power, a transient rhythm that favors maintenance of the current sensorimotor state and is inversely associated with tactile perception. In a two-alternative forced choice task, participants judged whether pairs of backward support surface perturbations during standing were in the "same" or "different" direction. As expected, lower whole-body perception was associated with lower balance ability. Within a perturbation pair, N1 attenuation was larger on correctly perceived trials and associated with better balance, but not perception. In contrast, preperturbation ß power was higher on incorrectly perceived trials and associated with poorer perception, but not balance. Together, ongoing and evoked cortical activity have unique roles in information processing that give rise to distinct associations with perceptual and balance ability.


Assuntos
Percepção de Movimento , Equilíbrio Postural , Adulto Jovem , Humanos , Masculino , Feminino , Equilíbrio Postural/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Movimento , Percepção de Movimento/fisiologia
3.
PLoS Comput Biol ; 20(6): e1012209, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870205

RESUMO

Balance impairments are common in cerebral palsy. When balance is perturbed by backward support surface translations, children with cerebral palsy have increased co-activation of the plantar flexors and tibialis anterior muscle as compared to typically developing children. However, it is unclear whether increased muscle co-activation is a compensation strategy to improve balance control or is a consequence of reduced reciprocal inhibition. During translational perturbations, increased joint stiffness due to co-activation might aid balance control by resisting movement of the body with respect to the feet. In contrast, during rotational perturbations, increased joint stiffness will hinder balance control as it couples body to platform rotation. Therefore, we expect increased muscle co-activation in response to rotational perturbations if co-activation is caused by reduced reciprocal inhibition but not if it is merely a compensation strategy. We perturbed standing balance by combined backward translational and toe-up rotational perturbations in 20 children with cerebral palsy and 20 typically developing children. Perturbations induced forward followed by backward movement of the center of mass. We evaluated reactive muscle activity and the relation between center of mass movement and reactive muscle activity using a linear feedback model based on center of mass kinematics. In typically developing children, perturbations induced plantar flexor balance correcting muscle activity followed by tibialis anterior balance correcting muscle activity, which was driven by center of mass movement. In children with cerebral palsy, the switch from plantar flexor to tibialis anterior activity was less pronounced than in typically developing children due to increased muscle co-activation of the plantar flexors and tibialis anterior throughout the response. Our results thus suggest that a reduction in reciprocal inhibition causes muscle co-activation in reactive standing balance in children with cerebral palsy.


Assuntos
Paralisia Cerebral , Músculo Esquelético , Equilíbrio Postural , Paralisia Cerebral/fisiopatologia , Humanos , Equilíbrio Postural/fisiologia , Criança , Masculino , Feminino , Músculo Esquelético/fisiopatologia , Fenômenos Biomecânicos , Rotação , Eletromiografia , Biologia Computacional , Adolescente
4.
Exp Physiol ; 109(1): 112-124, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37428622

RESUMO

Computational models can be critical to linking complex properties of muscle spindle organs to the sensory information that they encode during behaviours such as postural sway and locomotion where few muscle spindle recordings exist. Here, we augment a biophysical muscle spindle model to predict the muscle spindle sensory signal. Muscle spindles comprise several intrafusal muscle fibres with varied myosin expression and are innervated by sensory neurons that fire during muscle stretch. We demonstrate how cross-bridge dynamics from thick and thin filament interactions affect the sensory receptor potential at the spike initiating region. Equivalent to the Ia afferent's instantaneous firing rate, the receptor potential is modelled as a linear sum of the force and rate change of force (yank) of a dynamic bag1 fibre and the force of a static bag2/chain fibre. We show the importance of inter-filament interactions in (i) generating large changes in force at stretch onset that drive initial bursts and (ii) faster recovery of bag fibre force and receptor potential following a shortening. We show how myosin attachment and detachment rates qualitatively alter the receptor potential. Finally, we show the effect of faster recovery of receptor potential on cyclic stretch-shorten cycles. Specifically, the model predicts history-dependence in muscle spindle receptor potentials as a function of inter-stretch interval (ISI), pre-stretch amplitude and the amplitude of sinusoidal stretches. This model provides a computational platform for predicting muscle spindle response in behaviourally relevant stretches and can link myosin expression seen in healthy and diseased intrafusal muscle fibres to muscle spindle function.


Assuntos
Fibras Musculares Esqueléticas , Fusos Musculares , Fusos Musculares/fisiologia , Células Receptoras Sensoriais , Sarcômeros , Miosinas/metabolismo
5.
Exp Physiol ; 109(1): 148-158, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856330

RESUMO

Muscle spindles relay vital mechanosensory information for movement and posture, but muscle spindle feedback is coupled to skeletal motion by a compliant tendon. Little is known about the effects of tendon compliance on muscle spindle feedback during movement, and the complex firing of muscle spindles makes these effects difficult to predict. Our goal was to investigate changes in muscle spindle firing using added series elastic elements (SEEs) to mimic a more compliant tendon, and to characterize the accompanying changes in firing with respect to muscle-tendon unit (MTU) and muscle fascicle displacements (recorded via sonomicrometry). Sinusoidal, ramp-and-hold and triangular stretches were analysed to examine potential changes in muscle spindle instantaneous firing rates (IFRs) in locomotor- and perturbation-like stretches as well as serial history dependence. Added SEEs effectively reduced overall MTU stiffness and generally reduced muscle spindle firing rates, but the effect differed across stretch types. During sinusoidal stretches, peak and mean firing rates were not reduced and IFR was best-correlated with fascicle velocity. During ramp stretches, SEEs reduced the initial burst, dynamic and static responses of the spindle. Notably, IFR was negatively related to fascicle displacement during the hold phase. During triangular stretches, SEEs reduced the mean IFR during the first and second stretches, affecting the serial history dependence of mean IFR. Overall, these results demonstrate that tendon compliance may attenuate muscle spindle feedback during movement, but these changes cannot be fully explained by reduced muscle fascicle length or velocity, or MTU force.


Assuntos
Fusos Musculares , Músculo Esquelético , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Tendões/fisiologia , Movimento , Postura
6.
PLoS Comput Biol ; 19(10): e1011556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37889927

RESUMO

Locomotion results from the interactions of highly nonlinear neural and biomechanical dynamics. Accordingly, understanding gait dynamics across behavioral conditions and individuals based on detailed modeling of the underlying neuromechanical system has proven difficult. Here, we develop a data-driven and generative modeling approach that recapitulates the dynamical features of gait behaviors to enable more holistic and interpretable characterizations and comparisons of gait dynamics. Specifically, gait dynamics of multiple individuals are predicted by a dynamical model that defines a common, low-dimensional, latent space to compare group and individual differences. We find that highly individualized dynamics-i.e., gait signatures-for healthy older adults and stroke survivors during treadmill walking are conserved across gait speed. Gait signatures further reveal individual differences in gait dynamics, even in individuals with similar functional deficits. Moreover, components of gait signatures can be biomechanically interpreted and manipulated to reveal their relationships to observed spatiotemporal joint coordination patterns. Lastly, the gait dynamics model can predict the time evolution of joint coordination based on an initial static posture. Our gait signatures framework thus provides a generalizable, holistic method for characterizing and predicting cyclic, dynamical motor behavior that may generalize across species, pathologies, and gait perturbations.


Assuntos
Marcha , Caminhada , Humanos , Idoso , Fenômenos Biomecânicos , Locomoção , Velocidade de Caminhada
7.
J Neurophysiol ; 129(6): 1378-1388, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37162064

RESUMO

Muscle coactivation increases in challenging balance conditions as well as with advanced age and mobility impairments. Increased muscle coactivation can occur both in anticipation of (feedforward) and in reaction to (feedback) perturbations, however, the causal relationship between feedforward and feedback muscle coactivation remains elusive. Here, we hypothesized that feedforward muscle coactivation would increase both the body's initial mechanical resistance due to muscle intrinsic properties and the later feedback-mediated muscle coactivation in response to postural perturbations. Young adults voluntarily increased leg muscle coactivation using visual biofeedback before support-surface perturbations. In contrast to our hypothesis, feedforward muscle coactivation did not increase the body's initial intrinsic resistance to perturbations, nor did it increase feedback muscle coactivation. Rather, perturbations with feedforward muscle coactivation elicited a medium- to long-latency increase of feedback-mediated agonist activity but a decrease of feedback-mediated antagonist activity. This reciprocal rather than coactivation effect on ankle agonist and antagonist muscles enabled faster reactive ankle torque generation, reduced ankle dorsiflexion, and reduced center of mass (CoM) motion. We conclude that in young adults, voluntary feedforward muscle coactivation can be independently modulated with respect to feedback-mediated muscle coactivation. Furthermore, our findings suggest feedforward muscle coactivation may be useful for enabling quicker joint torque generation through reciprocal, rather than coactivated, agonist-antagonist feedback muscle activity. As such our results suggest that behavioral context is critical to whether muscle coactivation functions to increase agility versus stability.NEW & NOTEWORTHY Feedforward and feedback muscle coactivation are commonly observed in older and mobility impaired adults and are considered strategies to improve stability by increasing body stiffness prior to and in response to perturbations. In young adults, voluntary feedforward coactivation does not necessarily increase feedback coactivation in response to perturbations. Instead, feedforward coactivation enabled faster ankle torques through reciprocal agonist-antagonist muscle activity. As such, coactivation may promote either agility or stability depending on the behavioral context.


Assuntos
Tornozelo , Músculo Esquelético , Adulto Jovem , Humanos , Idoso , Músculo Esquelético/fisiologia , Articulação do Tornozelo/fisiologia , Contração Isométrica/fisiologia , Posição Ortostática , Eletromiografia/métodos , Equilíbrio Postural/fisiologia
8.
J Exp Biol ; 226(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37661732

RESUMO

The contributions of intrinsic muscle fiber resistance during mechanical perturbations to standing and other postural behaviors are unclear. Muscle short-range stiffness is known to vary depending on the current level and history of the muscle's activation, as well as the muscle's recent movement history; this property has been referred to as history dependence or muscle thixotropy. However, we currently lack sufficient data about the degree to which muscle stiffness is modulated across posturally relevant characteristics of muscle stretch and activation. We characterized the history dependence of muscle's resistance to stretch in single, permeabilized, activated, muscle fibers in posturally relevant stretch conditions and activation levels. We used a classic paired muscle stretch paradigm, varying the amplitude of a 'conditioning' triangular stretch-shorten cycle followed by a 'test' ramp-and-hold imposed after a variable inter-stretch interval. We tested low (<15%), intermediate (15-50%) and high (>50%) muscle fiber activation levels, evaluating short-range stiffness and total impulse in the test stretch. Muscle fiber resistance to stretch remained high at conditioning amplitudes of <1% optimal fiber length, L0, and inter-stretch intervals of >1 s, characteristic of healthy standing postural sway. An ∼70% attenuation of muscle resistance to stretch was reached at conditioning amplitudes of >3% L0 and inter-stretch intervals of <0.1 s, characteristic of larger, faster postural sway in balance-impaired individuals. The thixotropic changes cannot be predicted solely on muscle force at the time of stretch. Consistent with the disruption of muscle cross-bridges, muscle resistance to stretch during behavior can be substantially attenuated if the prior motion is large enough and/or frequent enough.


Assuntos
Movimento , Contração Muscular , Humanos , Contração Muscular/fisiologia , Movimento/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Movimento (Física) , Músculo Esquelético/fisiologia
9.
PLoS Comput Biol ; 18(6): e1009338, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35675227

RESUMO

Optimal control simulations have shown that both musculoskeletal dynamics and physiological noise are important determinants of movement. However, due to the limited efficiency of available computational tools, deterministic simulations of movement focus on accurately modelling the musculoskeletal system while neglecting physiological noise, and stochastic simulations account for noise while simplifying the dynamics. We took advantage of recent approaches where stochastic optimal control problems are approximated using deterministic optimal control problems, which can be solved efficiently using direct collocation. We were thus able to extend predictions of stochastic optimal control as a theory of motor coordination to include muscle coordination and movement patterns emerging from non-linear musculoskeletal dynamics. In stochastic optimal control simulations of human standing balance, we demonstrated that the inclusion of muscle dynamics can predict muscle co-contraction as minimal effort strategy that complements sensorimotor feedback control in the presence of sensory noise. In simulations of reaching, we demonstrated that nonlinear multi-segment musculoskeletal dynamics enables complex perturbed and unperturbed reach trajectories under a variety of task conditions to be predicted. In both behaviors, we demonstrated how interactions between task constraint, sensory noise, and the intrinsic properties of muscle influence optimal muscle coordination patterns, including muscle co-contraction, and the resulting movement trajectories. Our approach enables a true minimum effort solution to be identified as task constraints, such as movement accuracy, can be explicitly imposed, rather than being approximated using penalty terms in the cost function. Our approximate stochastic optimal control framework predicts complex features, not captured by previous simulation approaches, providing a generalizable and valuable tool to study how musculoskeletal dynamics and physiological noise may alter neural control of movement in both healthy and pathological movements.


Assuntos
Movimento , Contração Muscular , Simulação por Computador , Humanos , Modelos Biológicos , Movimento/fisiologia , Contração Muscular/fisiologia , Músculos , Equilíbrio Postural/fisiologia
10.
Exp Brain Res ; 241(10): 2419-2431, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648801

RESUMO

The error-related negativity (ERN) is a neural correlate of error monitoring often used to investigate individual differences in developmental, mental health, and adaptive contexts. However, limited experimental control over errors presents several confounds to its measurement. An experimentally controlled disturbance to standing balance evokes the balance N1, which we previously suggested may share underlying mechanisms with the ERN based on a number of shared features and factors. We now measure whether the balance N1 and ERN are correlated across individuals within two small groups (N = 21 young adults and N = 20 older adults). ERNs were measured in arrow flanker tasks using hand and foot response modalities (ERN-hand and ERN-foot). The balance N1 was evoked by sudden slip-like movements of the floor while standing. The ERNs and the balance N1 showed good and excellent internal consistency, respectively, and were correlated in amplitude in both groups. One principal component strongly loaded on all three evoked potentials, suggesting that the majority of individual differences are shared across the three ERPs. However, there remains a significant component of variance shared between the ERN-hand and ERN-foot beyond what they share with the balance N1. It is unclear whether this component of variance is specific to the arrow flanker task, or something fundamentally related to error processing that is not evoked by a sudden balance disturbance. If the balance N1 were to reflect error processing mechanisms indexed by the ERN, balance paradigms offer several advantages in terms of experimental control over errors.


Assuntos
, Mãos , Adulto Jovem , Humanos , Idoso , Extremidade Inferior , Extremidade Superior , Individualidade
11.
Brain ; 145(4): 1310-1325, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34849602

RESUMO

Hyperactivation of the mTOR pathway during foetal neurodevelopment alters neuron structure and function, leading to focal malformation of cortical development and intractable epilepsy. Recent evidence suggests a role for dysregulated cap-dependent translation downstream of mTOR signalling in the formation of focal malformation of cortical development and seizures. However, it is unknown whether modifying translation once the developmental pathologies are established can reverse neuronal abnormalities and seizures. Addressing these issues is crucial with regards to therapeutics because these neurodevelopmental disorders are predominantly diagnosed during childhood, when patients present with symptoms. Here, we report increased phosphorylation of the mTOR effector and translational repressor, 4E-BP1, in patient focal malformation of cortical development tissue and in a mouse model of focal malformation of cortical development. Using temporally regulated conditional gene expression systems, we found that expression of a constitutively active form of 4E-BP1 that resists phosphorylation by focal malformation of cortical development in juvenile mice reduced neuronal cytomegaly and corrected several neuronal electrophysiological alterations, including depolarized resting membrane potential, irregular firing pattern and aberrant expression of HCN4 ion channels. Further, 4E-BP1 expression in juvenile focal malformation of cortical development mice after epilepsy onset resulted in improved cortical spectral activity and decreased spontaneous seizure frequency in adults. Overall, our study uncovered a remarkable plasticity of the juvenile brain that facilitates novel therapeutic opportunities to treat focal malformation of cortical development-related epilepsy during childhood with potentially long-lasting effects in adults.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Epilepsia , Serina-Treonina Quinases TOR , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Encéfalo/patologia , Proteínas de Ciclo Celular/genética , Epilepsia/patologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Neurônios/metabolismo , Fosforilação , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Magn Reson Med ; 87(3): 1276-1288, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34655092

RESUMO

PURPOSE: To employ an off-resonance saturation method to measure the mineral-iron pool in the postmortem brain, which is an endogenous contrast agent that can give information on cellular iron status. METHODS: An off-resonance saturation acquisition protocol was implemented on a 7 Tesla preclinical scanner, and the contrast maps were fitted to an established analytical model. The method was validated by correlation and Bland-Altman analysis on a ferritin-containing phantom. Mineral-iron maps were obtained from postmortem tissue of patients with neurological diseases characterized by brain iron accumulation, that is, Alzheimer disease, Huntington disease, and aceruloplasminemia, and validated with histology. Transverse relaxation rate and magnetic susceptibility values were used for comparison. RESULTS: In postmortem tissue, the mineral-iron contrast colocalizes with histological iron staining in all the cases. Iron concentrations obtained via the off-resonance saturation method are in agreement with literature. CONCLUSIONS: Off-resonance saturation is an effective way to detect iron in gray matter structures and partially mitigate for the presence of myelin. If a reference region with little iron is available in the tissue, the method can produce quantitative iron maps. This method is applicable in the study of diseases characterized by brain iron accumulation and can complement existing iron-sensitive parametric methods.


Assuntos
Distúrbios do Metabolismo do Ferro , Ferro , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Minerais
13.
Phys Rev Lett ; 128(22): 223601, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35714252

RESUMO

The two-fluid model is fundamental for the description of superfluidity. In the nearly incompressible liquid regime, it successfully describes first and second sound, corresponding, respectively, to density and entropy waves, in both liquid helium and unitary Fermi gases. Here, we study the two sounds in the opposite regime of a highly compressible fluid, using an ultracold ^{39}K Bose gas in a three-dimensional box trap. We excite the longest-wavelength mode of our homogeneous gas, and observe two distinct resonant oscillations below the critical temperature, of which only one persists above it. In a microscopic mode-structure analysis, we find agreement with the hydrodynamic theory, where first and second sound involve density oscillations dominated by, respectively, thermal and condensed atoms. Varying the interaction strength, we explore the crossover from hydrodynamic to collisionless behavior in a normal gas.

14.
Neuroimage ; 245: 118752, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823024

RESUMO

AIMS: Non-invasive measures of brain iron content would be of great benefit in neurodegeneration with brain iron accumulation (NBIA) to serve as a biomarker for disease progression and evaluation of iron chelation therapy. Although magnetic resonance imaging (MRI) provides several quantitative measures of brain iron content, none of these have been validated for patients with a severely increased cerebral iron burden. We aimed to validate R2* as a quantitative measure of brain iron content in aceruloplasminemia, the most severely iron-loaded NBIA phenotype. METHODS: Tissue samples from 50 gray- and white matter regions of a postmortem aceruloplasminemia brain and control subject were scanned at 1.5 T to obtain R2*, and biochemically analyzed with inductively coupled plasma mass spectrometry. For gray matter samples of the aceruloplasminemia brain, sample R2* values were compared with postmortem in situ MRI data that had been obtained from the same subject at 3 T - in situ R2*. Relationships between R2* and tissue iron concentration were determined by linear regression analyses. RESULTS: Median iron concentrations throughout the whole aceruloplasminemia brain were 10 to 15 times higher than in the control subject, and R2* was linearly associated with iron concentration. For gray matter samples of the aceruloplasminemia subject with an iron concentration up to 1000 mg/kg, 91% of variation in R2* could be explained by iron, and in situ R2* at 3 T and sample R2* at 1.5 T were highly correlated. For white matter regions of the aceruloplasminemia brain, 85% of variation in R2* could be explained by iron. CONCLUSIONS: R2* is highly sensitive to variations in iron concentration in the severely iron-loaded brain, and might be used as a non-invasive measure of brain iron content in aceruloplasminemia and potentially other NBIA disorders.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ceruloplasmina/deficiência , Distúrbios do Metabolismo do Ferro/diagnóstico por imagem , Distúrbios do Metabolismo do Ferro/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Autopsia , Ceruloplasmina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Fenótipo
15.
J Neurophysiol ; 126(5): 1465-1477, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34587462

RESUMO

Postural muscle activity precedes voluntary movements of the upper limbs. The traditional view of this activity is that it anticipates perturbations to balance caused by the movement of a limb. However, findings from reach-based paradigms have shown that postural adjustments can initiate center of mass displacement for mobility rather than minimize its displacement for stability. Within this context, altering reaching distance beyond the base of support would place increasing constraints on equilibrium during stance. If the underlying composition of anticipatory postural activity is linked to stability, coordination between muscles (i.e., motor modules) may evolve differently as equilibrium constraints increase. We analyzed the composition of motor modules in functional trunk muscles as participants performed multidirectional reaching movements to targets within and beyond the arm's length. Bilateral trunk and reaching arm muscle activity were recorded. Despite different trunk requirements necessary for successful movement, and the changing biomechanical (i.e., postural) constraints that accompany alterations in reach distance, nonnegative matrix factorization identified functional motor modules derived from preparatory trunk muscle activity that shared common features. Relative similarity in modular weightings (i.e., composition) and spatial activation profiles that reflect movement goals across tasks necessitating differing levels of trunk involvement provides evidence that preparatory postural adjustments are linked to the same task priorities (i.e., movement generation rather than stability).NEW & NOTEWORTHY Reaching within and beyond arm's length places different task constraints upon the required trunk motion necessary for successful movement execution. The identification of constant modular features, including functional muscle weightings and spatial tuning, lend support to the notion that preparatory postural adjustments of the trunk are tied to the same task priorities driving mobility, regardless of the future postural constraints.


Assuntos
Fenômenos Biomecânicos/fisiologia , Proteínas de Drosophila/fisiologia , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
16.
J Neurophysiol ; 125(2): 586-598, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326357

RESUMO

Postural responses to similar perturbations of standing balance vary widely within and across subjects. Here, we identified two sources of variability and their interactions by combining experimental observations with computational modeling: differences in posture at perturbation onset across trials and differences in task-level goals across subjects. We first collected postural responses to unpredictable backward support-surface translations during standing in 10 young adults. We found that maximal trunk lean in postural responses to backward translations were highly variable both within subjects (mean of ranges = 28.3°) and across subjects (range of means = 39.9°). Initial center of mass (COM) position was correlated with maximal trunk lean during the response, but this relation was subject specific (R2 = 0.29-0.82). We then used predictive simulations to assess causal relations and interactions with task-level goal. Our simulations showed that initial posture explains the experimentally observed intrasubject variability with a more anterior initial COM position increasing the use of the hip strategy. Differences in task-level goal explain observed intersubject variability with prioritizing effort minimization leading to ankle strategies and prioritizing stability leading to hip strategies. Interactions between initial posture and task-level goal explain observed differences in intrasubject variability across subjects. Our findings suggest that variability in initial posture due to increased sway as observed in older adults might increase the occurrence of less stable postural responses to perturbations. Insight in factors causing movement variability will advance our ability to study the origin of differences between groups and conditions.NEW & NOTEWORTHY Responses to perturbations of standing balance vary both within and between individuals. By combining experimental observations with computational modeling, we identified causes of observed kinematic variability in healthy young adults. First, we found that trial-by-trial differences in posture at perturbation onset explain most of the kinematic variability observed within subjects. Second, we found that differences in prioritizing effort versus stability explained differences in the postural response as well as differences in trial-by-trial variability across subjects.


Assuntos
Variação Biológica da População , Equilíbrio Postural , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Posição Ortostática , Tronco/fisiologia
17.
J Neurosci ; 39(14): 2762-2773, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30700531

RESUMO

Tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) are focal malformations of cortical development (FMCDs) that are highly associated with intractable epilepsy. TSC and FCD are mTORopathies caused by a spectrum of pathogenic variants in the mechanistic target of rapamycin (mTOR) pathway genes leading to differential activation of mTOR signaling. However, whether the degree of mTOR hyperactivity influences disease severity remains unclear. Here, we examined the effects of differential mTOR hyperactivity levels on epilepsy and associated neuropathology in a mouse model of TSC and FCD. Constitutively active Rheb (RhebCA), the canonical activator of mTOR complex 1 (mTORC1), was expressed in mouse embryos of either sex via in utero electroporation at low, intermediate, and high concentrations to induce different mTORC1 activity levels in developing cortical neurons. We found that RhebCA expression induced mTORC1 hyperactivation and increased neuronal soma size and misplacement in a dose-dependent manner. No seizures were detected in the low RhebCA mice, whereas the intermediate and high RhebCA mice displayed spontaneous, recurrent seizures that significantly increased with higher RhebCA concentrations. Seizures were associated with a global increase in microglial activation that was notably higher in the regions containing RhebCA-expressing neurons. These data demonstrate that neuronal mTOR hyperactivity levels influence the severity of epilepsy and associated neuropathology in experimental TSC and FCD. Overall, these findings highlight the importance of evaluating the outcome of individual variants on mTOR activity levels and support personalized medicine strategies based on patient variants and mTOR activity level for TSC, FCD, and potentially other mTORopathies.SIGNIFICANCE STATEMENT Tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) are epileptogenic cortical malformations caused by pathogenic variants in mechanistic target of rapamycin (mTOR) pathway genes leading to differential mTOR hyperactivation. Here, we present novel findings that neuronal mTOR hyperactivity levels correlate with the severity of epilepsy and associated neuropathology in a mouse model of TSC and FCD. Our findings suggest the need to evaluate the outcome of individual variants on mTOR activity levels in clinical assessments and support personalized medicine strategies based on patient variants and mTOR activity level. Additionally, we present useful modifications to a previously described mouse model of TSC and FCD that allows for titration of seizure frequency and generation of a mild to severe epilepsy phenotype as applicable for preclinical drug testing and mechanistic studies.


Assuntos
Modelos Animais de Doenças , Epilepsia/metabolismo , Malformações do Desenvolvimento Cortical/metabolismo , Índice de Gravidade de Doença , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/metabolismo , Animais , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Feminino , Masculino , Malformações do Desenvolvimento Cortical/fisiopatologia , Camundongos , Esclerose Tuberosa/fisiopatologia
18.
J Neurophysiol ; 124(6): 1875-1884, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052770

RESUMO

The cortical N1 response to balance perturbation is observed in electroencephalography recordings simultaneous to automatic balance-correcting muscle activity. We recently observed larger cortical N1s in individuals who had greater difficulty resisting compensatory steps, suggesting the N1 may be influenced by stepping or changes in response strategy. Here, we test whether the cortical N1 response is influenced by stepping (planned steps versus feet-in-place) or prior planning (planned vs. unplanned steps). We hypothesized that prior planning of a step would reduce the amplitude of the cortical N1 response to balance perturbations. In 19 healthy young adults (ages 19-38; 8 men and 11 women), we measured the cortical N1 amplitude evoked by 48 backward translational support-surface perturbations of unpredictable timing and amplitude in a single experimental session. Participants were asked to plan a stepping reaction on half of perturbations, but to resist stepping otherwise. Perturbations included an easy (8 cm, 16 cm/s) perturbation that was identical across participants and did not naturally elicit compensatory steps, and a height-adjusted difficult (18-22 cm, 38-42 cm/s) perturbation that frequently elicited compensatory steps despite instructions to resist stepping. In contrast to our hypothesis, cortical N1 response amplitudes did not differ between planned and unplanned stepping reactions, but cortical responses were 11% larger with the execution of planned compensatory steps compared with nonstepping responses to difficult perturbations. These results suggest a possible role for the cortical N1 in the execution of compensatory steps for balance recovery, and this role is not influenced by whether the compensatory step was planned before the perturbation.NEW & NOTEWORTHY The cortical N1 response to balance perturbation is larger when executing compensatory steps, suggesting a relationship between the cortical N1 and subsequent motor behavior. Additionally, the cortical N1 response is not impacted by prior planning of the stepping reaction, suggesting that predictability of the motor outcome does not impact the N1 in the same way as predictability of the perturbation stimulus.


Assuntos
Fenômenos Biomecânicos/fisiologia , Potenciais Evocados/fisiologia , Marcha/fisiologia , Atividade Motora/fisiologia , Equilíbrio Postural/fisiologia , Adulto , Eletroencefalografia , Eletromiografia , Feminino , Humanos , Masculino , Adulto Jovem
19.
J Neurophysiol ; 124(3): 868-882, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783597

RESUMO

Task-level goals such as maintaining standing balance are achieved through coordinated muscle activity. Consistent and individualized groupings of synchronously activated muscles can be estimated from muscle recordings in terms of motor modules or muscle synergies, independent of their temporal activation. The structure of motor modules can change with motor training, neurological disorders, and rehabilitation, but the central and peripheral mechanisms underlying motor module structure remain unclear. To assess the role of peripheral somatosensory input on motor module structure, we evaluated changes in the structure of motor modules for reactive balance recovery following pyridoxine-induced large-fiber peripheral somatosensory neuropathy in previously collected data in four adult cats. Somatosensory fiber loss, quantified by postmortem histology, varied from mild to severe across cats. Reactive balance recovery was assessed using multidirectional translational support-surface perturbations over days to weeks throughout initial impairment and subsequent recovery of balance ability. Motor modules within each cat were quantified by non-negative matrix factorization and compared in structure over time. All cats exhibited changes in the structure of motor modules for reactive balance recovery after somatosensory loss, providing evidence that somatosensory inputs influence motor module structure. The impact of the somatosensory disturbance on the structure of motor modules in well-trained adult cats indicates that somatosensory mechanisms contribute to motor module structure, and therefore may contribute to some of the pathological changes in motor module structure in neurological disorders. These results further suggest that somatosensory nerves could be targeted during rehabilitation to influence pathological motor modules for rehabilitation.NEW & NOTEWORTHY Stable motor modules for reactive balance recovery in well-trained adult cats were disrupted following pyridoxine-induced peripheral somatosensory neuropathy, suggesting somatosensory inputs contribute to motor module structure. Furthermore, the motor module structure continued to change as the animals regained the ability to maintain standing balance, but the modules generally did not recover pre-pyridoxine patterns. These results suggest changes in somatosensory input and subsequent learning may contribute to changes in motor module structure in pathological conditions.


Assuntos
Músculo Esquelético/fisiologia , Fibras Nervosas Mielinizadas/patologia , Neurônios Aferentes/patologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Equilíbrio Postural/fisiologia , Recuperação de Função Fisiológica/fisiologia , Distúrbios Somatossensoriais/fisiopatologia , Animais , Gatos , Modelos Animais de Doenças , Eletromiografia , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Piridoxina/farmacologia , Distúrbios Somatossensoriais/induzido quimicamente , Complexo Vitamínico B/farmacologia
20.
J Neurophysiol ; 121(3): 867-880, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517039

RESUMO

The role of cortical activity in standing balance is unclear. Here we tested whether perturbation-evoked cortical responses share sensory input with simultaneous balance-correcting muscle responses. We hypothesized that the acceleration-dependent somatosensory signals that drive the initial burst of the muscle automatic postural response also drive the simultaneous perturbation-evoked cortical N1 response. We measured in healthy young adults ( n = 16) the initial burst of the muscle automatic postural response (100-200 ms), startle-related muscle responses (100-200 ms), and the perturbation-evoked cortical N1 potential, i.e., a negative peak in cortical EEG activity (100-200 ms) over the supplementary motor area. Forward and backward translational support-surface balance perturbations were applied at four levels of acceleration and were unpredictable in timing, direction, and acceleration. Our results from averaged and single-trial analyses suggest that although cortical and muscle responses are evoked by the same perturbation stimulus, their amplitudes are independently modulated. Although both muscle and cortical responses increase with acceleration, correlations between single-trial muscle and cortical responses were very weak. Furthermore, across subjects, the scaling of muscle responses to acceleration did not correspond to scaling of cortical responses to acceleration. Moreover, we observed a reduction in cortical response amplitude across trials that was related to a reduction in startle-related-but not balance-correcting-muscle activity. Therefore, cortical response attenuation may be related to a reduction in perceived threat rather than motor adaptation or changes in sensory inflow. We conclude that the cortical N1 reflects integrated sensory inputs simultaneously related to brain stem-mediated balance-correcting muscle responses and startle reflexes. NEW & NOTEWORTHY Reactive balance recovery requires sensory inputs to be transformed into appropriate balance-correcting motor responses via brain stem circuits; these are accompanied by simultaneous and poorly understood cortical responses. We used single-trial analyses to dissociate muscle and cortical response modulation with perturbation acceleration. Although muscle and cortical responses share sensory inputs, they have independent scaling mechanisms. Attenuation of cortical responses with experience reflected attenuation of brain stem-mediated startle responses rather than the amplitude of balance-correcting motor responses.


Assuntos
Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Equilíbrio Postural , Aceleração , Adulto , Potenciais Evocados , Feminino , Humanos , Masculino , Reflexo de Sobressalto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA