Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37627821

RESUMO

The valorization of fruit and vegetable residues (such as carrot discard) and their microbial conversion into 2,3-butanediol (BDO) can be considered as a very interesting way to reduce food waste and sustainably originate high value-added products. This work analyzes the valorization of carrot discard as feedstock for 2,3-butanediol (BDO) production by Paenibacillus polymyxa DSM 365. The influences of stirring and the presence of tryptone (nitrogen source) are studied. Furthermore, in order to evaluate the influence of the pre-culture medium (nitrogen source, nutrients, and pH) and the substrate, fermentation assays in simple and mixture semi-defined media (glucose, fructose, and/or galactose) were also carried out. As a result, 18.8 g/L BDO, with a BDO yield of 0.43 g/g (86% of its theoretical value), could be obtained from carrot discard enzymatic hydrolysate at 100 rpm, no tryptone, and pre-culture Häßler medium. No hydrothermal pre-treatment was necessary for BDO production from carrot discard, which increases the profitability of the process. Therefore, 18.8 g BDO, as well as 2.5 g ethanol and 2.1 g acetoin by-products, could be obtained from 100 g of carrot discard (dry matter).

2.
Bioresour Technol ; 329: 124929, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33706176

RESUMO

Sugarcane straw (SCS) was pretreated with dilute sulfuric acid assisted by microwave to magnify fermentable sugars and to minimize the concentration of inhibitors in the hydrolysates. The optimum conditions for maximum recovery of sugars were 162 °C and 0.6% (w/v) H2SO4. The low level of inhibitors, such as acetate (2.9 g/L) and total phenolics (1.4 g/L), in the SCS slurry from the pretreatment stage allowed the enzymatic hydrolysis and fermentation steps to occur without detoxification. Besides consuming the total sugar content (31.0 g/L), Clostridium beijerinckii Br21 was able to use acetate from the SCS hydrolysate, to give butyric acid at high conversion factor (0.49 g of butyric acid /g of sugar). The optimized pretreatment conditions spared acid, time, and the detoxification stage, making bio-butyric acid production from SCS extremely attractive.


Assuntos
Clostridium beijerinckii , Saccharum , Ácido Butírico , Fermentação , Hidrólise , Micro-Ondas
3.
Bioresour Technol ; 247: 736-743, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30060408

RESUMO

This study evaluated the possibility of using rapeseed straw hemicellulosic hydrolysate as a fermentation medium for xylitol production. Two yeast strains, namely Debaryomyces hansenii and Candida guilliermondii, were used for this bioconversion process and their performance to convert xylose into xylitol was compared. Additionally, different strategies were evaluated for the hydrolysate detoxification before its use as a fermentation medium. Assays in semi-defined media were also performed to verify the influence of hexose sugars on xylose metabolism by the yeasts. C. guilliermondii exhibited higher tolerance to toxic compounds than D. hansenii. Not only the toxic compounds present in the hydrolysate affected the yeast's performance, but glucose also had a negative impact on their performance. It was not necessary to completely eliminate the toxic compounds to obtain an efficient conversion of xylose into xylitol, mainly by C. guilliermondii (YP/S=0.55g/g and 0.45g/g for C. guilliermondii and D. hansenii, respectively).


Assuntos
Brassica rapa , Candida , Xilitol , Fermentação , Polissacarídeos , Xilose
4.
Sci Total Environ ; 645: 533-542, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30029129

RESUMO

A large amount of olive-derived biomass is generated yearly in Spain, which could be used as a potential source of bioactive compounds. The present work evaluates the recovery of natural antioxidants from olive tree pruning (OTP) and olive mill leaves (OML). For this purpose, the effect of different solvents on the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity was evaluated. The solvent was found to have a significant effect (p < 0.05) on the TPC, TFC, and the DPPH, ABTS, and FRAP activity, affording similar results for the extracts from the two by-products. The extracts obtained using 50% ethanol showed high TPC (23.85 and 27.54 mg GAE/gdw for OTP and OML, respectively) and TFC (52.82 and 52.39 mg RE/gdw for OTP and OML, respectively). Also, the OTP and OML extracts exhibited notable antioxidant activity as measured by the ABTS method (45.96 and 42.71 mg TE/gdw, respectively). Using pyrolysis-gas chromatography/mass spectrometry, 30 bioactive compounds were detected in both extracts. Additionally, UPLC-DAD-ESI-MS allowed the identification of 15 compounds in the samples. Furthermore, the antioxidant extracts were found to inhibit the growth of several food pathogenic bacteria. This research demonstrates that these by-products from olive grove farming are a good source of antioxidant compounds with antibacterial properties, which have potential applications in the food and pharmaceutical industries.


Assuntos
Resíduos Industriais , Olea , Compostos Fitoquímicos/análise , Extratos Vegetais , Antioxidantes , Flavonoides , Fenóis , Espanha
5.
Bioresour Technol ; 239: 326-335, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28531858

RESUMO

Olive tree biomass (OTB) can be used for producing second generation bioethanol. In this work, extracted OTB was subjected to fractionation using a sequential acid/alkaline oxidative pretreatment. In the first acid stage, the effects of sulfuric acid concentration and reaction times at 130°C were investigated. Up to 71% solubilization of hemicellulosic sugars was achieved under optimized conditions (2.4% H2SO4, 84min). In the second stage, the influence of hydrogen peroxide concentration and process time were evaluated at 80°C. Approximately 80% delignification was achieved under the best operational conditions (7% H2O2, 90min) within the experimental range studied. This pretreatment produced a substrate with 72% cellulose that was highly accessible to enzymatic attack, yielding 82g glucose/100g glucose in delignified OTB. Ethanol production from both hemicellulosic sugars solubilized in the acid pretreatment and glucose from enzymatic hydrolysis of delignified OTB yielded 15g ethanol/100g OTB.


Assuntos
Etanol , Peróxido de Hidrogênio , Olea , Biocombustíveis , Biomassa , Fermentação , Hidrólise , Peróxidos
6.
Biomed Res Int ; 2017: 9727581, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250553

RESUMO

Olive tree pruning, as one of the most abundant lignocellulosic residues in Mediterranean countries, has been evaluated as a source of sugars for fuel and chemicals production. A mild acid pretreatment has been combined with a fungal pretreatment using either two endophytes (Ulocladium sp. and Hormonema sp.) or a saprophyte (Trametes sp. I-62). The use of endophytes is based on the important role that some of them play during the initial stages of wood decomposition. Without acid treatment, fungal pretreatment with Ulocladium sp. provided a nonsignificant enhancement of 4.6% in glucose digestibility, compared to control. When a mild acid hydrolysis was carried out after fungal pretreatments, significant increases in glucose digestibility from 4.9% to 12.0% (compared to control without fungi) were observed for all fungal pretreatments, with maximum values yielded by Hormonema sp. However, despite the observed digestibility boost, the total sugar yields (taking into account solid yield) were not significantly increased by the pretreatments. Nevertheless, based on these preliminary improvements in digestibility, this work proves the potential of endophytic fungi to boost the production of sugar from olive tree pruning, which would add an extra value to the bioeconomy of olive crops.


Assuntos
Ascomicetos/metabolismo , Endófitos/metabolismo , Madeira/metabolismo , Biocombustíveis , Biomassa , Biotecnologia , Hidrólise , Olea/química , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA