Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(25): 14294-14301, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38874060

RESUMO

Enzymatic browning in fruits and vegetables, driven by polyphenol oxidase (PPO) activity, results in color changes and loss of bioactive compounds. Emerging technologies are being explored to prevent this browning and ensure microbial safety in foods. This study assessed the effectiveness of pulsed light (PL) and ultraviolet light-emitting diodes (UV-LED) in inhibiting PPO and inactivating Escherichia coli ATTC 25922 in fresh apple juice (Malus domestica var. Red Delicious). Both treatments' effects on juice quality, including bioactive compounds, color changes, and microbial inactivation, were examined. At similar doses, PL-treated samples (126 J/cm2) showed higher 2,2- diphenyl-1-picrylhydrazyl inhibition (9.5%) compared to UV-LED-treated samples (132 J/cm2), which showed 1.06%. For microbial inactivation, UV-LED achieved greater E. coli reduction (>3 log cycles) and less ascorbic acid degradation (9.4% ± 0.05) than PL. However, increasing PL doses to 176 J/cm2 resulted in more than 5 log cycles reduction of E. coli, showing a synergistic effect with the final temperature reached (55 °C). The Weibull model analyzed survival curves to evaluate inactivation kinetics. UV-LED was superior in preserving thermosensitive compounds, while PL excelled in deactivating more PPO and achieving maximal microbial inactivation more quickly.


Assuntos
Catecol Oxidase , Escherichia coli , Sucos de Frutas e Vegetais , Malus , Viabilidade Microbiana , Raios Ultravioleta , Catecol Oxidase/metabolismo , Malus/química , Escherichia coli/efeitos da radiação , Sucos de Frutas e Vegetais/análise , Sucos de Frutas e Vegetais/microbiologia , Viabilidade Microbiana/efeitos da radiação , Irradiação de Alimentos/métodos
2.
Foods ; 13(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39123510

RESUMO

The organic acids produced by lactic acid bacteria (LAB) during the fermentation of sourdoughs have the ability to reduce the growth of different molds. However, this ability depends on the LAB used. For this reason, in this study, the proportions of different LAB were optimized to obtain aqueous extracts (AEs) from sourdough to reduce fungal growth in vitro, control the acetic acid concentration, and obtain a specific lactic to acetic acid ratio. In addition, the optimized mixtures were used to formulate partially baked bread (PBB) and evaluate the mold growth and bread quality during refrigerated storage. Using a simplex-lattice mixture design, various combinations of Lactiplantibacillus plantarum, Lacticaseibacillus casei, and Lactobacillus acidophilus were evaluated for their ability to produce organic acids and inhibit mold growth. The mixture containing only Lpb. plantarum significantly reduced the growth rates and extended the lag time of Penicillium chrysogenum and P. corylophilum compared with the control. The AEs' pH values ranged from 3.50 to 3.04. Organic acid analysis revealed that using Lpb. plantarum yielded higher acetic acid concentrations than when using mixed LAB. This suggests that LAB-specific interactions significantly influence organic acid production during fermentation. The reduced radial growth rates and extended lag times for both molds compared to the control confirmed the antifungal properties of the AEs from the sourdoughs. Statistical analyses of the mixture design using polynomial models demonstrated a good fit for the analyzed responses. Two optimized LAB mixtures were identified that maximized mold lag time, targeted the desired acetic acid concentration, and balanced the lactic to acetic acid ratio. The addition of sourdough with optimized LAB mixtures to PBB resulted in a longer shelf life (21 days) and adequately maintained product quality characteristics during storage. PBB was subjected to complete baking and sensory evaluation. The overall acceptability was slightly higher in the control without sourdough (7.50), followed by bread formulated with the optimized sourdoughs (ranging from 6.78 to 7.10), but the difference was not statistically significant (p > 0.05). The sensory analysis results indicated that the optimization was used to successfully formulate a sourdough bread with a sensory profile closely resembling that of a nonsupplemented one. The designed LAB mixtures can effectively enhance sourdough bread's antifungal properties and quality, providing a promising approach for extending bread shelf life while maintaining desirable sensory attributes.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38791776

RESUMO

Using whey, a by-product of the cheese-making process, is important for maximizing resource efficiency and promoting sustainable practices in the food industry. Reusing whey can help minimize environmental impact and produce bio-preservatives for foods with high bacterial loads, such as Mexican-style fresh cheeses. This research aims to evaluate the antimicrobial and physicochemical effect of CFS from Lactobacillus casei 21/1 produced in a conventional culture medium (MRS broth) and another medium using whey (WB medium) when applied in Mexican-style fresh cheese inoculated with several indicator bacteria (Escherichia coli, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes). The CFSs (MRS or WB) were characterized for organic acids concentration, pH, and titratable acidity. By surface spreading, CFSs were tested on indicator bacteria inoculated in fresh cheese. Microbial counts were performed on inoculated cheeses during and after seven days of storage at 4 ± 1.0 °C. Moreover, pH and color were determined in cheeses with CFS treatment. Lactic and acetic acid were identified as the primary antimicrobial metabolites produced by the Lb. casei 21/1 fermentation in the food application. A longer storage time (7 days) led to significant reductions (p < 0.05) in the microbial population of the indicator bacteria inoculated in the cheese when it was treated with the CFSs (MRS or WB). S. enterica serovar Typhimurium was the most sensitive bacteria, decreasing 1.60 ± 0.04 log10 CFU/g with MRS-CFS, whereas WB-CFS reduced the microbial population of L. monocytogenes to 1.67 log10 CFU/g. E. coli and S. aureus were the most resistant at the end of storage. The cheese's pH with CFSs (MRS or WB) showed a significant reduction (p < 0.05) after CFS treatment, while the application of WB-CFS did not show greater differences in color (ΔE) compared with MRS-CFS. This study highlights the potential of CFS from Lb. casei 21/1 in the WB medium as an ecological bio-preservative for Mexican-style fresh cheese, aligning with the objectives of sustainable food production and guaranteeing food safety.


Assuntos
Queijo , Lacticaseibacillus casei , Soro do Leite , Queijo/microbiologia , Queijo/análise , Lacticaseibacillus casei/metabolismo , Soro do Leite/química , Soro do Leite/microbiologia , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Conservação de Alimentos/métodos , México , Fermentação
4.
Arch. latinoam. nutr ; 65(2): 128-135, June 2015. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-752724

RESUMO

En este trabajo se evaluaron la composición, algunas características físicas (densidad, índice de refracción y color), capacidad antioxidante (DPPH) y perfil de ácidos grasos de semillas de mostaza negra (Brassica nigra) y amarilla (Brassica alba), sus aceites y residuos de la extracción del aceite. La densidad de los aceites de mostaza negra y amarilla fue de 0,912 ± 0,01 y 0,916 ± 0,01 g/mL, respectivamente; y el índice de refracción fue de 1,4611 ± 0,01 y 1,4617 ± 0,01, respectivamente, no mostrando diferencias significativas (p>0,05) entre las dos mostazas. Los parámetros de color del aceite de semilla de mostaza negra y amarilla tienden hacia los tonos amarillos-verdosos y tonos amarillos-rojizos, respectivamente; respecto a la actividad antioxidante, se observó una variación desde 25 mg equivalentes de Trolox/100 g en el aceite de semilla de mostaza amarilla hasta 1,366 mg equivalentes de Trolox/100 g en la pasta residual de mostaza negra. El perfil de ácidos grasos de la semillas de mostaza negra muestran que el ácido graso predominante es el oleico (22,96%), seguido por linoleico (6,63%) y linolénico (3,22%), mientras que para la semilla de mostaza amarilla es el erúcico (6,87%), seguido por oleico (5,08%) y linoléico (1,87%).


The composition, some physical properties (density, refraction index, and color), antioxidant capacity (DPPH), and fatty acid profile of seeds of black (Brassica nigra) or yellow mustard (Brassica alba) were evaluated, as well as for their oils and residues from oil extraction. Density of the black and yellow mustard oils were 0.912 ± 0.01 and 0.916 ± 0.01 g/mL, respectively; their refraction indexes were 1.4611 ± 0.01 and 1.4617 ± 0.01, respectively; being not significantly different (p>0.05) between two mustards. Color parameters of the black and yellow mustard oils presented greenish-yellow tones and reddish-yellow tones, respectively; regarding antioxidant activities, these ranged from 25 mg equivalents of Trolox/100 g in the yellow mustard oil to 1,366 mg equivalents of Trolox/100 g in the residues from oil extraction of black seed mustard. The fatty acid profile of the black mustard seed revealed that its predominant fatty acid is oleic (22.96%), followed by linoleic (6.63%) and linolenic (3.22%), whereas for yellow mustard seed the major fatty acid is erucic (6.87%), followed by oleic (5.08%) and linoleic (1.87%) acids.


Assuntos
Antioxidantes/análise , Mostardeira/química , Sementes/química , Cor , Ácidos Graxos/análise , Óleos de Plantas/química , Refratometria
5.
Arch. latinoam. nutr ; 64(1): 50-58, mar. 2014. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-752691

RESUMO

Se evaluó la capacidad antioxidante (CA) en subproductos de semillas de amaranto (Amaranthus hypochondriacus) de dos parcelas de cultivo, en función de tres métodos de extracción y dos disolventes, a tres concentraciones diferentes. En una primera etapa, se evaluó el efecto del método de extracción (homogeneización, ultrasonido de baja frecuencia y la combinación homogeneización-ultrasonido) y del disolvente de extracción (metanol o etanol, al 100%); en una segunda etapa, se evaluó el efecto de la concentración del disolvente de extracción (100%, 70% o 50%). La CA se determinó por inhibición del radical DPPH▪, expresándola en mg Equivalentes de Trolox (ET)/g materia seca; los compuestos fenólicos totales (FT) se determinaron mediante el ensayo de Folin-Ciocalteu, expresándolos como Equivalentes de Ácido Gálico (EAG)/g materia seca. Los compuestos antioxidantes se identificaron mediante cromatografía de gases acoplada a espectrometría de masas. Para la CA, no existe diferencia significativa (p>0,05) entre los métodos de extracción estudiados, mientras que si la hay (p<0,05) entre disolventes (3,39 y 1,28 mg ET/g materia seca, con metanol y etanol, respectivamente). Para FT, no hay diferencia significativa (p>0,05) entre disolventes al usarlos diluidos, sólo al emplearlos al 100%; mientras que para CA sí hay efecto de la concentración del disolvente, obteniendo mayores valores de CA al utilizar los disolventes al 50% (21,34 y 21,82 mg ET/g materia seca, con metanol y etanol, respectivamente). El análisis cualitativo de los extractos mostró la presencia de escualeno y 2,5- bis (1,1-dimetiletil) fenol como los principales compuestos con capacidad antioxidante.


The antioxidant capacity (CA) of byproducts from amaranth (Amaranthus hypochondriacus) seeds from two harvest parcels as a function of three extraction methods and two solvents was evaluated. On a first stage the effect of extraction method (homogenization, low frequency ultrasound, or the combination homogenization-ultrasound) and extraction solvent (methanol or ethanol, 100%) were evaluated; on a second stage, the effect of extraction solvent concentration (100%, 70%, or 50%) was evaluated. CA was determined by DPPH▪ inhibition, which was expressed as mg Equivalents of Trolox (ET)/g dry matter (DM). Total Phenolic compounds (FT) were determined by means of the Folin- Ciocalteu assay and expressed as Equivalents of Gallic Acid (EGA)/g DM. Antioxidant compounds were identified by gas chromatography coupled to mass spectrometry. For CA, there was not significant difference (p>0,05) among extraction methods, but there was significant difference (p<0,05) between solvents (3,39 and 1,28 mg ET/g DM, with methanol and ethanol, respectively). For FT, there was not significant difference (p>0,05) between solvents when they were diluted, but a significant difference (p<0,05) was observed when they were used at 100%. For CA, there was a significant (p<0,05) effect of solvent concentration, both studied solvents at 50% provided the best results (21,34 and 21,82 mg ET/g DM with methanol and ethanol, respectively). The qualitative analysis of the extracts exhibited the presence of squalene and 2,5-bis (1,1-dimethylethyl) phenol as the major compounds with antioxidant capacity.


Assuntos
Amaranthus/química , Antioxidantes/análise , Sementes/química , Cromatografia Líquida de Alta Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA