RESUMO
Frequency-modulated continuous wave radar sensors play an essential role for assisted and autonomous driving as they are robust under all weather and light conditions. However, the rising number of transmitters and receivers for obtaining a higher angular resolution increases the cost for digital signal processing. One promising approach for energy-efficient signal processing is the usage of brain-inspired spiking neural networks (SNNs) implemented on neuromorphic hardware. In this article we perform a step-by-step analysis of automotive radar processing and argue how spiking neural networks could replace or complement the conventional processing. We provide SNN examples for two processing steps and evaluate their accuracy and computational efficiency. For radar target detection, an SNN with temporal coding is competitive to the conventional approach at a low compute overhead. Instead, our SNN for target classification achieves an accuracy close to a reference artificial neural network while requiring 200 times less operations. Finally, we discuss the specific requirements and challenges for SNN-based radar processing on neuromorphic hardware. This study proves the general applicability of SNNs for automotive radar processing and sustains the prospect of energy-efficient realizations in automated vehicles.
RESUMO
The development of advanced autonomous driving applications is hindered by the complex temporal structure of sensory data, as well as by the limited computational and energy resources of their on-board systems. Currently, neuromorphic engineering is a rapidly growing field that aims to design information processing systems similar to the human brain by leveraging novel algorithms based on spiking neural networks (SNNs). These systems are well-suited to recognize temporal patterns in data while maintaining a low energy consumption and offering highly parallel architectures for fast computation. However, the lack of effective algorithms for SNNs impedes their wide usage in mobile robot applications. This paper addresses the problem of radar signal processing by introducing a novel SNN that substitutes the discrete Fourier transform and constant false-alarm rate algorithm for raw radar data, where the weights and architecture of the SNN are derived from the original algorithms. We demonstrate that our proposed SNN can achieve competitive results compared to that of the original algorithms in simulated driving scenarios while retaining its spike-based nature.