Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Adv ; 9(28): eadf9460, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436997

RESUMO

During intestinal organogenesis, equipotent epithelial progenitors mature into phenotypically distinct stem cells that are responsible for lifelong maintenance of the tissue. While the morphological changes associated with the transition are well characterized, the molecular mechanisms underpinning the maturation process are not fully understood. Here, we leverage intestinal organoid cultures to profile transcriptional, chromatin accessibility, DNA methylation, and three-dimensional (3D) chromatin conformation landscapes in fetal and adult epithelial cells. We observed prominent differences in gene expression and enhancer activity, which are accompanied by local changes in 3D organization, DNA accessibility, and methylation between the two cellular states. Using integrative analyses, we identified sustained Yes-Associated Protein (YAP) transcriptional activity as a major gatekeeper of the immature fetal state. We found the YAP-associated transcriptional network to be regulated at various levels of chromatin organization and likely to be coordinated by changes in extracellular matrix composition. Together, our work highlights the value of unbiased profiling of regulatory landscapes for the identification of key mechanisms underlying tissue maturation.


Assuntos
Epigenômica , Mucosa Intestinal , Adulto , Humanos , Intestinos , Epitélio , Cromatina/genética
2.
Cell Stem Cell ; 28(8): 1380-1396.e6, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33852917

RESUMO

Cervical cancer is a common gynecological malignancy often caused by high-risk human papillomavirus. There is a paucity of human-derived culture systems to study the cervical epithelium and the cancers derived thereof. Here we describe a long-term culturing protocol for ecto- and endocervical epithelia that generates 3D organoids that stably recapitulate the two tissues of origin. As evidenced for HSV-1, organoid-based cervical models may serve to study sexually transmitted infections. Starting from Pap brush material, a small biobank of tumoroids derived from affected individuals was established that retained the causative human papillomavirus (HPV) genomes. One of these uniquely carried the poorly characterized HPV30 subtype, implying a potential role in carcinogenesis. The tumoroids displayed differential responses to common chemotherapeutic agents and grew as xenografts in mice. This study describes an experimental platform for cervical (cancer) research and for future personalized medicine approaches.


Assuntos
Neoplasias do Colo do Útero , Animais , Carcinogênese , Epitélio , Feminino , Humanos , Camundongos , Organoides , Papillomaviridae
3.
Trends Cancer ; 6(12): 1031-1043, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32855097

RESUMO

The human female reproductive tract (FRT) is a complex system that combines series of organs, including ovaries, fallopian tubes, uterus, cervix, vagina, and vulva; each of which possesses unique cellular characteristics and functions. This versatility, in turn, allows for the development of a wide range of epithelial gynecological cancers with distinct features. Thus, reliable model systems are required to better understand the diverse mechanisms involved in the regional pathogenesis of the reproductive tract and improve treatment strategies. Here, we review the current human-derived model systems available to study the multitude of gynecological cancers, including ovarian, endometrial, cervical, vaginal, and vulvar cancer, and the recent advances in the push towards personalized therapy.


Assuntos
Neoplasias dos Genitais Femininos/terapia , Medicina de Precisão/métodos , Cultura Primária de Células/métodos , Linhagem Celular Tumoral , Feminino , Heterogeneidade Genética , Neoplasias dos Genitais Femininos/genética , Neoplasias dos Genitais Femininos/mortalidade , Neoplasias dos Genitais Femininos/patologia , Humanos , Organoides , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
FEBS Lett ; 594(5): 958-970, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31705801

RESUMO

Lgr5-LacZ mice harbor the Escherichia coli LacZ gene encoding ß-galactosidase (ß-gal) under the control of the Lgr5 promoter, a stem/progenitor cell marker. In injured livers of Lgr5-LacZ mice, cells expressing ß-galactosidase (ß-gal) are considered as potential bipotent liver progenitors; however, their origin and identity remain unknown. Unexpectedly, using lineage tracing, we demonstrate that the ß-gal+ cells do not originate from liver parenchymal cells. Instead, ß-gal+ cells, isolated from injured livers of both Lgr5-LacZ and wild-type mice, are positive for markers of Kupffer cells, liver-resident macrophages. The ß-gal expression in these cells is a result of elevated expression of the endogenous beta-galactosidase Glb1. In injured livers of Lgr5-LacZ mice, bacterial ß-gal expression is very low, suggesting transgene silencing. The gene expression profile of the ß-gal+ Kupffer cells from injured livers suggests a role in liver regeneration.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Células de Kupffer/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Imunológicos/metabolismo , beta-Galactosidase/genética , Animais , Tetracloreto de Carbono/efeitos adversos , Linhagem da Célula , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Células de Kupffer/efeitos dos fármacos , Óperon Lac , Regeneração Hepática , Masculino , Camundongos , Camundongos Transgênicos , Análise de Sequência de RNA , beta-Galactosidase/metabolismo
5.
Nat Commun ; 11(1): 2660, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461556

RESUMO

High-grade serous ovarian cancer (HG-SOC)-often referred to as a "silent killer"-is the most lethal gynecological malignancy. The fallopian tube (murine oviduct) and ovarian surface epithelium (OSE) are considered the main candidate tissues of origin of this cancer. However, the relative contribution of each tissue to HG-SOC is not yet clear. Here, we establish organoid-based tumor progression models of HG-SOC from murine oviductal and OSE tissues. We use CRISPR-Cas9 genome editing to introduce mutations into genes commonly found mutated in HG-SOC, such as Trp53, Brca1, Nf1 and Pten. Our results support the dual origin hypothesis of HG-SOC, as we demonstrate that both epithelia can give rise to ovarian tumors with high-grade pathology. However, the mutated oviductal organoids expand much faster in vitro and more readily form malignant tumors upon transplantation. Furthermore, in vitro drug testing reveals distinct lineage-dependent sensitivities to the common drugs used to treat HG-SOC in patients.


Assuntos
Sistemas CRISPR-Cas/genética , Organoides , Neoplasias Ovarianas/etiologia , Animais , Antineoplásicos/farmacologia , Proteína BRCA1/genética , Proteína 9 Associada à CRISPR , Epitélio/patologia , Tubas Uterinas/patologia , Feminino , Edição de Genes/métodos , Camundongos , Mutação , Neurofibromatose 1/genética , Técnicas de Cultura de Órgãos/métodos , Organoides/efeitos dos fármacos , Organoides/fisiopatologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Ovário/patologia , PTEN Fosfo-Hidrolase/genética , Proteína Supressora de Tumor p53/genética
6.
Cell Rep ; 31(11): 107762, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32553164

RESUMO

There remains an unmet need for preclinical models to enable personalized therapy for ovarian cancer (OC) patients. Here we evaluate the capacity of patient-derived organoids (PDOs) to predict clinical drug response and functional consequences of tumor heterogeneity. We included 36 whole-genome-characterized PDOs from 23 OC patients with known clinical histories. OC PDOs maintain the genomic features of the original tumor lesion and recapitulate patient response to neoadjuvant carboplatin/paclitaxel combination treatment. PDOs display inter- and intrapatient drug response heterogeneity to chemotherapy and targeted drugs, which can be partially explained by genetic aberrations. PDO drug screening identifies high responsiveness to at least one drug for 88% of patients. PDOs are valuable preclinical models that can provide insights into drug response for individual patients with OC, complementary to genetic testing. Generating PDOs of multiple tumor locations can improve clinical decision making and increase our knowledge of genetic and drug response heterogeneity.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Organoides/patologia , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Paclitaxel/farmacologia , Preparações Farmacêuticas/metabolismo , Medicina de Precisão
7.
Cancer Discov ; 9(7): 852-871, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31053628

RESUMO

Previous studies have described that tumor organoids can capture the diversity of defined human carcinoma types. Here, we describe conditions for long-term culture of human mucosal organoids. Using this protocol, a panel of 31 head and neck squamous cell carcinoma (HNSCC)-derived organoid lines was established. This panel recapitulates genetic and molecular characteristics previously described for HNSCC. Organoids retain their tumorigenic potential upon xenotransplantation. We observe differential responses to a panel of drugs including cisplatin, carboplatin, cetuximab, and radiotherapy in vitro. Additionally, drug screens reveal selective sensitivity to targeted drugs that are not normally used in the treatment of patients with HNSCC. These observations may inspire a personalized approach to the management of HNSCC and expand the repertoire of HNSCC drugs. SIGNIFICANCE: This work describes the culture of organoids derived from HNSCC and corresponding normal epithelium. These tumoroids recapitulate the disease genetically, histologically, and functionally. In vitro drug screening of tumoroids reveals responses to therapies both currently used in the treatment of HNSCC and those not (yet) used in clinical practice.See related commentary by Hill and D'Andrea, p. 828.This article is highlighted in the In This Issue feature, p. 813.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Mucosa Bucal/patologia , Organoides/patologia , Medicina de Precisão/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Animais , Carboplatina/administração & dosagem , Cetuximab/administração & dosagem , Quimiorradioterapia , Cisplatino/administração & dosagem , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/efeitos da radiação , Organoides/efeitos dos fármacos , Organoides/efeitos da radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nat Med ; 25(5): 838-849, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31011202

RESUMO

Ovarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Experimental in vitro models that faithfully capture the hallmarks and tumor heterogeneity of OC are limited and hard to establish. We present a protocol that enables efficient derivation and long-term expansion of OC organoids. Utilizing this protocol, we have established 56 organoid lines from 32 patients, representing all main subtypes of OC. OC organoids recapitulate histological and genomic features of the pertinent lesion from which they were derived, illustrating intra- and interpatient heterogeneity, and can be genetically modified. We show that OC organoids can be used for drug-screening assays and capture different tumor subtype responses to the gold standard platinum-based chemotherapy, including acquisition of chemoresistance in recurrent disease. Finally, OC organoids can be xenografted, enabling in vivo drug-sensitivity assays. Taken together, this demonstrates their potential application for research and personalized medicine.


Assuntos
Organoides/patologia , Neoplasias Ovarianas/patologia , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Genômica , Xenoenxertos , Humanos , Camundongos SCID , Pessoa de Meia-Idade , Mutação , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Medicina de Precisão
9.
Arthritis Res Ther ; 17: 144, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26018562

RESUMO

INTRODUCTION: Dupuytren's contracture (DC) is a chronic fibroproliferative disease of the hand, which is characterized by uncontrolled proliferation of atypical myofibroblasts at the cellular level. We hypothesized that specific areas of the DC tissue are sustaining the cell proliferation and studied the potential molecular determinants that might contribute to the formation of such niches. METHODS: We studied the expression pattern of cell proliferation marker Ki67, phosphorylated AKT (Ak mouse strain thymoma) kinase, DC-associated growth factors (connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), insulin-like growth factor 2 (IGF-2)) and extracellular matrix components (laminins, fibronectin, collagen IV) in DC tissue and normal palmar fascia using immunofluorescence microscopy and quantitative real-time polymerase chain reaction (qPCR). RESULTS: We found that proliferative cells in the DC nodules were concentrated in the immediate vicinity of small blood vessels and localized predominantly in the myofibroblast layer. Correspondingly, the DC-associated blood vessels contained increased levels of phosphorylated AKT, a hallmark of activated growth factor signaling. When studying the expression of potential activators of AKT signaling we found that the expression of bFGF was confined to the endothelium of the small blood vessels, IGF-2 was present uniformly in the DC tissue and CTGF was expressed in the DC-associated sweat gland acini. In addition, the blood vessels in DC nodules contained increased amounts of laminins 511 and 521, which have been previously shown to promote the proliferation and stem cell properties of different cell types. CONCLUSIONS: Based on our findings, we propose that in the DC-associated small blood vessels the presence of growth factors in combination with favorable extracellular matrix composition provide a supportive environment for sustained proliferation of myofibroblasts and thus the blood vessels play an important role in DC pathogenesis.


Assuntos
Vasos Sanguíneos/metabolismo , Contratura de Dupuytren/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Laminina/metabolismo , Proliferação de Células , Contratura de Dupuytren/metabolismo , Fáscia/irrigação sanguínea , Fáscia/patologia , Humanos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA