Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nucleosides Nucleotides Nucleic Acids ; 39(10-12): 1281-1305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32043431

RESUMO

This paper is based on the Anne Simmonds Memorial Lecture, given by Monika Löffler at the International Symposium on Purine and Pyrimidine Metabolism in Man, Lyon 2019. It is dedicated to H. Anne Simmonds (died 2010) - a founding member of the ESSPPMM, since 2003 Purine and Pyrimidine Society - and her outstanding contributions to the identification and study of inborn errors of purine and pyrimidine metabolism. The distinctive intracellular arrangement of pyrimidine de novo synthesis in higher eukaryotes is important to cells with a high demand for nucleic acid synthesis. The proximity of the enzyme active sites and the resulting channeling in CAD and UMP synthase is of kinetic benefit. The intervening enzyme dihydroorotate dehydrogenase (DHODH) is located in the mitochondrion with access to the ubiquinone pool, thus ensuring efficient removal of redox equivalents through the constitutive activity of the respiratory chain, also a mechanism through which the input of 2 ATP for carbamylphosphate synthesis is balanced by Oxphos. The obligatory contribution of O2 to de novo UMP synthesis means that DHODH has a pivotal role in adapting the proliferative capacity of cells to different conditions of oxygenation, such as hypoxia in growing tumors. DHODH also is a validated drug target in inflammatory diseases. This survey of selected topics of personal interest and reflection spans some 40 years of our studies from tumor cell cultures under hypoxia to in vitro assays including purification from mitochondria, localization, cloning, expression, biochemical characterization, crystallisation, kinetics and inhibition patterns of eukaryotic DHODH enzymes.


Assuntos
Mitocôndrias/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Pirimidinas/metabolismo , Di-Hidro-Orotato Desidrogenase , Transporte de Elétrons , Humanos , Mitocôndrias/metabolismo
2.
Front Microbiol ; 10: 1479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316493

RESUMO

The oomycete Phytophthora infestans is the causal agent of tomato and potato late blight, a disease that causes tremendous economic losses in the production of solanaceous crops. The similarities between oomycetes and the apicomplexa led us to hypothesize that dihydroorotate dehydrogenase (DHODH), the enzyme catalyzing the fourth step in pyrimidine biosynthetic pathway, and a validated drug target in treatment of malaria, could be a potential target for controlling P. infestans growth. In eukaryotes, class 2 DHODHs are mitochondrially associated ubiquinone-linked enzymes that catalyze the fourth, and only redox step of de novo pyrimidine biosynthesis. We characterized the enzymes from both the pathogen and a host, Solanum tuberosum. Plant DHODHs are known to be class 2 enzymes. Sequence analysis suggested that the pathogen enzyme (PiDHODHs) also belongs to this class. We confirmed the mitochondrial localization of GFP-PiDHODH showing colocalization with mCherry-labeled ATPase in a transgenic pathogen. N-terminally truncated versions of the two DHODHs were overproduced in E. coli, purified, and kinetically characterized. StDHODH exhibited a apparent specific activity of 41 ± 1 µmol min-1 mg-1, a kcat app of 30 ± 1 s-1, and a Km app of 20 ± 1 µM for L-dihydroorotate, and a Km app= 30 ± 3 µM for decylubiquinone (Qd). PiDHODH exhibited an apparent specific activity of 104 ± 1 µmol min-1 mg-1, a kcat app of 75 ± 1 s-1, and a Km app of 57 ± 3 µM for L-dihydroorotate, and a Km app of 15 ± 1 µM for Qd. The two enzymes exhibited different activities with different quinones and napthoquinone derivatives, and different sensitivities to compounds known to cause inhibition of DHODHs from other organisms. The IC50 for A77 1726, a nanomolar inhibitor of human DHODH, was 2.9 ± 0.6 mM for StDHODH, and 79 ± 1 µM for PiDHODH. In vivo, 0.5 mM A77 1726 decreased mycelial growth by approximately 50%, after 92 h. Collectively, our findings suggest that the PiDHODH could be a target for selective inhibitors and we provide a biochemical background for the development of compounds that could be helpful for the control of the pathogen, opening the way to protein crystallization.

3.
FEBS J ; 273(14): 3183-91, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16774642

RESUMO

Candida albicans is the most prevalent yeast pathogen in humans, and recently it has become increasingly resistant to the current antifungal agents. In this study we investigated C. albicans dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11), which catalyzes the fourth step of de novo pyrimidine synthesis, as a new target for controlling infection. We propose that the enzyme is a member of the DHODH family 2, which comprises mitochondrially bound enzymes, with quinone as the direct electron acceptor and oxygen as the final electron acceptor. Full-length DHODH and N-terminally truncated DHODH, which lacks the targeting sequence and the transmembrane domain, were subcloned from C. albicans, recombinantly expressed in Escherichia coli, purified, and characterized for their kinetics and substrate specificity. An inhibitor screening with 28 selected compounds was performed. Only the dianisidine derivative, redoxal, and the biphenyl quinoline-carboxylic acid derivative, brequinar sodium, which are known to be potent inhibitors of mammalian DHODH, markedly reduced C. albicans DHODH activity. This study provides a background for the development of antipyrimidines with high efficacy for decreasing in situ pyrimidine nucleotide pools in C. albicans.


Assuntos
Candida albicans/enzimologia , Candida albicans/patogenicidade , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Compostos de Aminobifenil/metabolismo , Compostos de Aminobifenil/farmacologia , Compostos de Bifenilo/metabolismo , Compostos de Bifenilo/farmacologia , Sequência Conservada , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Glutationa Transferase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Cinética , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
4.
Trends Mol Med ; 11(9): 430-7, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16098809

RESUMO

Genetic defects involving enzymes essential for pyrimidine nucleotide metabolism have provided new insights into the vital physiological functions of these molecules in addition to nucleic acid synthesis. Such aberrations disrupt the haematological, nervous or mitochondrial systems and can cause adverse reactions to analogue therapy. Regulation of pyrimidine pathways is also known to be disrupted in malignancies. Nine genetic defects have now been identified but only one is currently treatable. Diagnosis is aided by the accumulation of specific metabolites. Recently, progress has been made in understanding the molecular mechanisms underlying inborn errors of pyrimidine metabolism, together with the key clinical issues and the implications for the future development of novel drugs and therapeutic strategies.


Assuntos
Saúde , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Pirimidinas/metabolismo , Transdução de Sinais , Humanos , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/terapia , Pirimidinas/antagonistas & inibidores
5.
J Genet Genomics ; 42(5): 207-19, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26059769

RESUMO

It is timely to consider the many facets of the small molecule orotic acid (OA), which is well-known as an essential intermediate of pyrimidine de novo synthesis. In addition, it can be taken up by erythrocytes and hepatocytes for conversion into uridine and for use in the pyrimidine recycling pathway. We discuss the link between dietary orotate and fatty liver in rats, and the potential for the alleviation of neonatal hyperbilirubinaemia. We address the development of orotate derivatives for application as anti-pyrimidine drugs, and of complexes with metal ions and organic cations to assist therapies of metabolic syndromes. Recent genetic data link human Miller syndrome to defects in the dihydroorotate dehydrogenase (DHODH) gene, hence to depleted orotate production. Another defect in pyrimidine biosynthesis, the orotic aciduria arising in humans and cattle with a deficiency of UMP synthase (UMPS), has different symptoms. More recent work leads us to conclude that OA may have a role in regulating gene transcription.


Assuntos
Ácido Orótico/metabolismo , Pirimidinas/biossíntese , Animais , Sistema Nervoso Central/metabolismo , Enzimas/metabolismo , Humanos , Leite/metabolismo
6.
Protein Sci ; 13(4): 1031-42, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15044733

RESUMO

The flavin enzyme dihydroorotate dehydrogenase (DHOD; EC 1.3.99.11) catalyzes the oxidation of dihydroorotate to orotate, the fourth step in the de novo pyrimidine biosynthesis of UMP. The enzyme is a promising target for drug design in different biological and clinical applications for cancer and arthritis. The first crystal structure of the class 2 dihydroorotate dehydrogenase from rat has been determined in complex with its two inhibitors brequinar and atovaquone. These inhibitors have shown promising results as anti-proliferative, immunosuppressive, and antiparasitic agents. A unique feature of the class 2 DHODs is their N-terminal extension, which folds into a separate domain comprising two alpha-helices. This domain serves as the binding site for the two inhibitors and the respiratory quinones acting as the second substrate for the class 2 DHODs. The orientation of the first N-terminal helix is very different in the two complexes of rat DHOD (DHODR). Binding of atovaquone causes a 12 A movement of the first residue in the first alpha-helix. Based on the information from the two structures of DHODR, a model for binding of the quinone and the residues important for the interactions could be defined. His 56 and Arg 136, which are fully conserved in all class 2 DHODs, seem to play a key role in the interaction with the electron acceptor. The differences between the membrane-bound rat DHOD and membrane-associated class 2 DHODs exemplified by the Escherichia coli DHOD has been investigated by GRID computations of the hydrophobic probes predicted to interact with the membrane.


Assuntos
Compostos de Anilina/metabolismo , Compostos de Bifenilo/metabolismo , Inibidores Enzimáticos/metabolismo , Hidroxibutiratos/metabolismo , Imunossupressores/metabolismo , Naftoquinonas/metabolismo , Ácido Orótico/análogos & derivados , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Sequência de Aminoácidos , Compostos de Anilina/química , Animais , Atovaquona , Compostos de Bifenilo/química , Catálise , Crotonatos , Cristalografia por Raios X , Di-Hidro-Orotato Desidrogenase , Desenho de Fármacos , Inibidores Enzimáticos/química , Ligação de Hidrogênio , Hidroxibutiratos/química , Imunossupressores/química , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Naftoquinonas/química , Nitrilas , Ácido Orótico/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Alinhamento de Sequência , Especificidade por Substrato , Toluidinas
7.
FEBS Lett ; 568(1-3): 129-34, 2004 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-15196933

RESUMO

Genes for two structurally and functionally different dihydroorotate dehydrogenases (DHODHs, EC 1.3.99.11), catalyzing the fourth step of pyrimidine biosynthesis, have been previously found in yeast Saccharomyces kluyveri. One is closely related to the Schizosaccharomyces pombe mitochondrial family 2 enzymes, which use quinones as direct and oxygen as the final electron acceptor. The other one resembles the Saccharomyces cerevisiae cytosolic family 1A fumarate-utilizing DHODH. The DHODHs from S. kluyveri, Sch. pombe and S. cerevisiae, were expressed in Escherichia coli and compared for their biochemical properties and interaction with inhibitors. Benzoates as pyrimidine ring analogs were shown to be selective inhibitors of cytosolic DHODs. This unique property of Saccharomyces DHODHs could appoint DHODH as a species-specific target for novel anti-fungal therapeutics.


Assuntos
Isoenzimas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Saccharomyces/enzimologia , Sequência de Bases , Primers do DNA , Di-Hidro-Orotato Desidrogenase , Eletroforese em Gel de Poliacrilamida , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/isolamento & purificação , Cinética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
8.
FEBS Lett ; 529(2-3): 346-50, 2002 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-12372626

RESUMO

The mitochondrial membrane bound dihydroorotate dehydrogenase (DHODH; EC 1.3.99.11) catalyzes the fourth step of pyrimidine biosynthesis. By the present correction of a known cDNA sequence for Arabidopsis thaliana DHODH we revealed the importance of the very C-terminal part for its catalytic activity and the reason why--in contrast to mammalian and insect species--the recombinant plant flavoenzyme was unaccessible to date for in vitro characterization. Structure-activity relationship studies explained that potent inhibitors of animal DHODH do not significantly affect the plant enzyme. These difference could be exploited for a novel approach to herb or pest growth control by limitation of pyrimidine nucleotide pools.


Assuntos
Arabidopsis/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Oxirredutases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , DNA Complementar , Di-Hidro-Orotato Desidrogenase , Eletroforese em Gel de Poliacrilamida , Humanos , Cinética , Dados de Sequência Molecular , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Oxirredutases/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato
9.
Insect Biochem Mol Biol ; 32(9): 1159-69, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12213251

RESUMO

Dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11), the fourth enzyme of pyrimidine de novo synthesis, is an integral flavoprotein of the inner mitchondrial membrane and is functionally connected to the respiratory chain. Here, experiments have been directed toward determining the roles of the N-terminal sequence motifs both in enzymatic properties of insect DHODH produced in vitro and the in vivo function of the protein. Full-length and three N-terminal truncated derivatives of the Drosophila melanogaster enzyme were expressed in Escherichia coli and purified. For identification on Western blots of recombinant DHODH as well as the native enzyme from flies polyclonal anti-DHODH immunoglobulins were generated and affinity-purified. The enzymatic characteristics of the four versions of DHODH were very similar, indicating that the N-terminus of the enzyme does not influence its catalytic function or its susceptibility to prominent DHODH inhibitors: A77-1726, brequinar, dichloroallyl-lawsone and redoxal. Whereas the efficacy of A77-1726 and dichloroallyl-lawsone were similar with Drosophila and human DHODH, that of brequinar and redoxal differed significantly. The differences in responses of insect DHODH and the enzyme from other species may allow the design of new agents that will selectively control insect growth, due to pyrimidine nucleotide limitation. In vivo expression of the full-length and N-truncated DHODHs from engineered transgenes revealed that the truncated proteins could not support normal de novo pyrimidine biosynthesis during development of the fly (i.e., failure to complement dhod-null mutations), apparently due to instability of the truncated proteins. It is concluded that the proper intracellular localization, directed by the N-terminal targeting and transmembrane motifs, is required for stability and subsequent proper biological function in vivo.


Assuntos
Drosophila melanogaster/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Oxirredutases/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Di-Hidro-Orotato Desidrogenase , Drosophila melanogaster/genética , Escherichia coli , Expressão Gênica , Cinética , Dados de Sequência Molecular , Oxirredutases/genética , Oxirredutases/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
10.
Arch Pharm Res ; 26(3): 197-201, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12723931

RESUMO

Novel beta-hydroxy propenamides as analogues of the active metabolite of leflunomide (A 771726) were synthesized and evaluated for their inhibitory activity on dihydroorotate dehydrogenase (DHODH) in an investigation into their immunosuppressive activity. Compounds 2a, 3a, and 3h were approximately 4-40 times more potent than leflunomide in their activity while they were-less active than A 771726.


Assuntos
Compostos de Anilina/síntese química , Inibidores Enzimáticos/síntese química , Hidroxibutiratos/síntese química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Crotonatos , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Hidroxibutiratos/química , Hidroxibutiratos/farmacologia , Isoxazóis/metabolismo , Leflunomida , Nitrilas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Toluidinas
11.
Mol Biochem Parasitol ; 184(2): 71-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22580100

RESUMO

The pyrimidine biosynthesis pathway in the protozoan pathogen Toxoplasma gondii is essential for parasite growth during infection. To investigate the properties of dihydroorotate dehydrogenase (TgDHOD), the fourth enzyme in the T. gondii pyrimidine pathway, we expressed and purified recombinant TgDHOD. TgDHOD exhibited a specific activity of 84U/mg, a k(cat) of 89s(-1), a K(m)=60µM for l-dihydroorotate, and a K(m)=29µM for decylubiquinone (Q(D)). Quinones lacking or having short isoprenoid side chains yielded lower k(cat)s than Q(D). As expected, fumarate was a poor electron acceptor for this family 2 DHOD. The IC(50)s determined for A77-1726, the active derivative of the human DHOD inhibitor leflunomide, and related compounds MD249 and MD209 were, 91µM, 96µM, and 60µM, respectively. The enzyme was not significantly affected by brequinar or TTFA, known inhibitors of human DHOD, or by atovaquone. DSM190, a known inhibitor of Plasmodium falciparum DHOD, was a poor inhibitor of TgDHOD. TgDHOD exhibits a lengthy 157-residue N-terminal extension, consistent with a potential organellar targeting signal. We constructed C-terminally c-myc tagged TgDHODs to examine subcellular localization of TgDHOD in transgenic parasites expressing the tagged protein. Using both exogenous and endogenous expression strategies, anti-myc fluorescence signal colocalized with antibodies against the mitochondrial marker ATPase. These findings demonstrate that TgDHOD is associated with the parasite's mitochondrion, revealing this organelle as the site of orotate production in T. gondii. The TgDHOD gene appears to be essential because while gene tagging was successful at the TgDHOD gene locus, attempts to delete the TgDHOD gene were not successful in the KU80 background. Collectively, our study suggests that TgDHOD is an excellent target for the development of anti-Toxoplasma drugs.


Assuntos
Mitocôndrias/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Proteínas de Protozoários/química , Pirimidinas/biossíntese , Toxoplasma/enzimologia , Sequência de Aminoácidos , Vias Biossintéticas , Clonagem Molecular , Sequência Conservada , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/química , Técnicas de Inativação de Genes , Cinética , Dados de Sequência Molecular , Ácido Orótico/análogos & derivados , Ácido Orótico/química , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteólise , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
12.
Nucleosides Nucleotides Nucleic Acids ; 30(12): 1147-54, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22132969

RESUMO

Tissue-specific expression of the genes coding for the six enzymes of the de novo pyrimidine synthesis and for the first enzyme of the degradation pathway, dihydropyrimidine dehydrogenase (DPD), was analyzed in the rat using the in situ hybridization technique. Transcripts of the biosynthetic enzymes were detected in liver, kidney, and spleen with the highest expression in the white pulp. DPD was also transcribed in these organs with a striking layer-specific localization of DPD mRNA and protein in the kidney. All enzyme mRNAs were present in brain at low levels, but with region- and cell-specific differences. The relatively high expression in cortical regions including cerebellum and hippocampus points to a fundamental role of pyrimidine metabolism in brain function.


Assuntos
Encéfalo/enzimologia , Regulação Enzimológica da Expressão Gênica , Especificidade de Órgãos , Pirimidinas/biossíntese , Animais , Di-Hidrouracila Desidrogenase (NADP)/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Imuno-Histoquímica , Rim/citologia , Rim/enzimologia , Masculino , Ratos , Ratos Wistar
13.
FEMS Yeast Res ; 7(6): 897-904, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17617217

RESUMO

In all organisms the fourth catalytic step of the pyrimidine biosynthesis is driven by the flavoenzyme dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11). Cytosolic DHODH of the established model organism Saccharomyces cerevisiae catalyses the oxidation of dihydroorotate to orotate and the reduction of fumarate to succinate. Here, we investigate the structure and mechanism of DHODH from S. cerevisiae and show that the recombinant ScDHODH exists as a homodimeric enzyme in vitro. Inhibition of ScDHODH by the reaction product was observed and kinetic studies disclosed affinity for orotate (K(ic)=7.7 microM; K(ic) is the competitive inhibition constant). The binding constant for orotate was measured through comparison of UV-visible spectra of the bound and unbound recombinant enzyme. The midpoint reduction potential of DHODH-bound flavine mononucleotide determined from analysis of spectral changes was -242 mV (vs. NHE) under anaerobic conditions. A search for alternative electron acceptors revealed that homologues such as mesaconate can be used as electron acceptors.


Assuntos
Fumaratos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Catálise , Di-Hidro-Orotato Desidrogenase , Redes e Vias Metabólicas , Modelos Moleculares , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/isolamento & purificação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise Espectral
14.
Appl Environ Microbiol ; 73(10): 3371-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17369345

RESUMO

Dihydroorotate dehydrogenase (DHODH; EC 1.3.99.11) is a central enzyme of pyrimidine biosynthesis and catalyzes the oxidation of dihydroorotate to orotate. DHODH is an important target for antiparasitic and cytostatic drugs since rapid cell proliferation often depends on the de novo synthesis of pyrimidine nucleotides. We have cloned the pyr4 gene encoding mitochondrial DHODH from the basidiomycetous plant pathogen Ustilago maydis. We were able to show that pyr4 contains a functional mitochondrial targeting signal. The deletion of pyr4 resulted in uracil auxotrophy, enhanced sensitivity to UV irradiation, and a loss of pathogenicity on corn plants. The biochemical characterization of purified U. maydis DHODH overproduced in Escherichia coli revealed that the U. maydis enzyme uses quinone electron acceptor Q6 and is resistant to several commonly used DHODH inhibitors. Here we show that the expression of the human DHODH gene fused to the U. maydis mitochondrial targeting signal is able to complement the auxotrophic phenotype of pyr4 mutants. While U. maydis wild-type cells were resistant to the DHODH inhibitor brequinar, strains expressing the human DHODH gene became sensitive to this cytostatic drug. Such engineered U. maydis strains can be used in sensitive in vivo assays for the development of novel drugs specifically targeted at either human or fungal DHODH.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Deleção de Genes , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Ustilago/efeitos dos fármacos , Ustilago/genética , Compostos de Bifenilo/farmacologia , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Di-Hidro-Orotato Desidrogenase , Expressão Gênica , Teste de Complementação Genética , Humanos , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas/genética , Pirimidinas/biossíntese , Proteínas Recombinantes/antagonistas & inibidores , Ustilago/crescimento & desenvolvimento , Ustilago/metabolismo
15.
Clin Chem ; 50(11): 2117-24, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15375016

RESUMO

BACKGROUND: The concentrations of the pyrimidine "de novo" metabolites and their degradation products in urine are useful indicators for the diagnosis of an inborn error of the pyrimidine de novo pathway or a urea-cycle defect. Until now, no procedure was available that allowed the analysis of all of these metabolites in a single analytical run. We describe a rapid, specific method to measure these metabolites by HPLC-tandem mass spectrometry. METHODS: Urine or urine-soaked filter-paper strips were used to measure N-carbamyl-aspartate, dihydroorotate, orotate, orotidine, uridine, and uracil. Reversed-phase HPLC was combined with electrospray ionization tandem mass spectrometry, and detection was performed by multiple-reaction monitoring. Stable-isotope-labeled reference compounds were used as internal standards. RESULTS: All pyrimidine de novo metabolites and their degradation products were measured within a single analytical run of 14 min with lower limits of detection of 0.4-3 micromol/L. The intra- and interassay variation for urine with added compounds was 1.2-5% for urines and 2-9% for filter-paper extracts of the urines. Recoveries of the added metabolites were 97-106% for urine samples and 97-115% for filter-paper extracts of the urines. Analysis of urine samples from patients with a urea-cycle defect or pyrimidine degradation defect showed an aberrant metabolic profile when compared with controls. CONCLUSION: HPLC with electrospray ionization tandem mass spectrometry allows rapid testing for disorders affecting the pyrimidine de novo pathway. The use of filter-paper strips could facilitate collection, transport, and storage of urine samples.


Assuntos
Pirimidinas/urina , Manejo de Espécimes/métodos , Acidúria Argininossuccínica , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Di-Hidrouracila Desidrogenase (NADP)/urina , Humanos , Lactente , Recém-Nascido , Doença da Deficiência de Ornitina Carbomoiltransferase , Papel , Pirimidinas/metabolismo , Valores de Referência , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray
16.
J Physiol ; 542(Pt 3): 735-41, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12154175

RESUMO

Diazoxide and 5-hydroxydecanoate (5-HD; C10:0) are reputed to target specifically mitochondrial ATP-sensitive K(+) (K(ATP)) channels. Here we describe K(ATP) channel-independent targets of diazoxide and 5-HD in the heart. Using submitochondrial particles isolated from pig heart, we found that diazoxide (10-100 microM) dose-dependently decreased succinate oxidation without affecting NADH oxidation. Pinacidil, a non-selective K(ATP) channel opener, did not inhibit succinate oxidation. However, it selectively inhibited NADH oxidation. These direct inhibitory effects of diazoxide and pinacidil cannot be explained by activation of mitochondrial K(ATP) channels. Furthermore, application of either diazoxide (100 microM) or pinacidil (100 microM) did not decrease mitochondrial membrane potential, assessed using TMRE (tetramethylrhodamine ethyl ester), in isolated guinea-pig ventricular myocytes. We also tested whether 5-HD, a medium-chain fatty acid derivative which blocks diazoxide-induced cardioprotection, was 'activated' via acyl-CoA synthetase (EC 6.2.1.3), an enzyme present both on the outer mitochondrial membrane and in the matrix. Using analytical HPLC and electrospray ionisation mass spectrometry, we showed that 5-HD-CoA (5-hydroxydecanoyl-CoA) is indeed synthesized from 5-HD and CoA via acyl-CoA synthetase. Thus, 5-HD-CoA may be the active form of 5-HD, serving as substrate for (or inhibiting) acyl-CoA dehydrogenase (beta-oxidation) and/or exerting some other cellular action. In conclusion, we have identified K(ATP) channel-independent targets of 5-HD, diazoxide and pinacidil. Our findings question the assumption that sensitivity to diazoxide and 5-HD implies involvement of mitochondrial K(ATP) channels. We propose that pharmacological preconditioning may be related to partial inhibition of respiratory chain complexes.


Assuntos
Trifosfato de Adenosina/fisiologia , Ácidos Decanoicos/farmacologia , Diazóxido/farmacologia , Coração/efeitos dos fármacos , Hidroxiácidos/farmacologia , Miocárdio/metabolismo , Canais de Potássio/fisiologia , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Acil Coenzima A/metabolismo , Animais , Coenzima A Ligases/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Flavoproteínas/fisiologia , Fluorescência , Cobaias , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias Cardíacas/fisiologia , Pinacidil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA