Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.716
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 167(5): 1281-1295.e18, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863244

RESUMO

Glioblastoma stem cells (GSCs) are implicated in tumor neovascularization, invasiveness, and therapeutic resistance. To illuminate mechanisms governing these hallmark features, we developed a de novo glioblastoma multiforme (GBM) model derived from immortalized human neural stem/progenitor cells (hNSCs) to enable precise system-level comparisons of pre-malignant and oncogene-induced malignant states of NSCs. Integrated transcriptomic and epigenomic analyses uncovered a PAX6/DLX5 transcriptional program driving WNT5A-mediated GSC differentiation into endothelial-like cells (GdECs). GdECs recruit existing endothelial cells to promote peritumoral satellite lesions, which serve as a niche supporting the growth of invasive glioma cells away from the primary tumor. Clinical data reveal higher WNT5A and GdECs expression in peritumoral and recurrent GBMs relative to matched intratumoral and primary GBMs, respectively, supporting WNT5A-mediated GSC differentiation and invasive growth in disease recurrence. Thus, the PAX6/DLX5-WNT5A axis governs the diffuse spread of glioma cells throughout the brain parenchyma, contributing to the lethality of GBM.


Assuntos
Glioblastoma/genética , Glioblastoma/patologia , Invasividade Neoplásica/genética , Proteína Wnt-5a/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Epigenômica , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Fator de Transcrição PAX6/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo
2.
Cell ; 157(5): 1130-45, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24855949

RESUMO

Regulation of nuclear import is fundamental to eukaryotic biology. The majority of nuclear import pathways are mediated by importin-cargo interactions. Yet not all nuclear proteins interact with importins, necessitating the identification of a general importin-independent nuclear import pathway. Here, we identify a code that determines importin-independent nuclear import of ankyrin repeats (ARs), a structural motif found in over 250 human proteins with diverse functions. AR-containing proteins (ARPs) with a hydrophobic residue at the 13th position of two consecutive ARs bind RanGDP efficiently, and consequently enter the nucleus. This code, experimentally tested in 17 ARPs, predicts the nuclear-cytoplasmic localization of over 150 annotated human ARPs with high accuracy and is acquired by the most common familial melanoma-associated CDKN2A mutation, leading to nuclear accumulation of mutant p16ink4a. The RaDAR (RanGDP/AR) pathway represents a general importin-independent nuclear import pathway and is frequently used by AR-containing transcriptional regulators, especially those regulating NF-κB/p53.


Assuntos
Transporte Ativo do Núcleo Celular , Repetição de Anquirina , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Transporte Proteico , Inibidor p16 de Quinase Dependente de Ciclina/genética , Humanos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
3.
Nat Rev Mol Cell Biol ; 17(8): 523-32, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27220640

RESUMO

Many proteins originally identified as cytoplasmic - including many associated with the cytoskeleton or cell junctions - are increasingly being found in the nucleus, where they have specific functions. Here, we focus on proteins that translocate from the cytoplasm to the nucleus in response to external signals and regulate transcription without binding to DNA directly (for example, through interaction with transcription factors). We propose that proteins with such characteristics are classified as a distinct group of extracellular signalling effectors, and we suggest the term STRaND (shuttling transcriptional regulators and non-DNA binding) to refer to this group. Crucial roles of STRaNDs include linking cell morphology and adhesion with changes in transcriptional programmes in response to signals such as mechanical stresses.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas c-yes/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
Nature ; 606(7914): 511-515, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35417651

RESUMO

The recycling of aluminium scrap today utilizing a remelting technique downgrades the quality of the aluminium, and the final sink of this downgraded recycled aluminium is aluminium casting alloys1-9. The predicted increase in demand for high-grade aluminium as consumers choose battery-powered electric vehicles over internal combustion engine vehicles is expected to be accompanied by a drop in the demand for low-grade recycled aluminium, which is mostly used in the production of internal combustion engines2,7,10,11. To meet the demand for high-grade aluminium in the future, a new aluminium recycling method capable of upgrading scrap to a level similar to that of primary aluminium is required2-4,7,11. Here we propose a solid-state electrolysis (SSE) process using molten salts for upcycling aluminium scrap. The SSE produces aluminium with a purity comparable to that of primary aluminium from aluminium casting alloys. Moreover, the energy consumption of the industrial SSE is estimated to be less than half that of the primary aluminium production process. By effectively recycling aluminium scrap, it could be possible to consistently meet demand for high-grade aluminium. True sustainability in the aluminium cycle is foreseeable with the use of this efficient, low-energy-consuming process.

5.
Mol Cell ; 79(3): 472-487.e10, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32531202

RESUMO

It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Consequently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development and drives tumorigenesis, whereas a high-affinity non-acetylatable mutant does not. The results reveal a paradoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding protein-mediated transcription factor acetylation may represent a common mechanism to control transcription factor availability.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genoma , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Processamento de Proteína Pós-Traducional , Neoplasias Cutâneas/genética , Acetilação , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Sequência Conservada , Elementos Facilitadores Genéticos , Feminino , Xenoenxertos , Humanos , Masculino , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Nus , Fator de Transcrição Associado à Microftalmia/química , Fator de Transcrição Associado à Microftalmia/metabolismo , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Peixe-Zebra
6.
N Engl J Med ; 390(24): 2274-2283, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38767614

RESUMO

BACKGROUND: Dupilumab, a fully human monoclonal antibody that blocks the shared receptor component for interleukin-4 and interleukin-13, key and central drivers of type 2 inflammation, has shown efficacy and safety in a phase 3 trial involving patients with chronic obstructive pulmonary disease (COPD) and type 2 inflammation and an elevated risk of exacerbation. Whether the findings would be confirmed in a second phase 3 trial was unclear. METHODS: In a phase 3, double-blind, randomized trial, we assigned patients with COPD who had a blood eosinophil count of 300 cells per microliter or higher to receive subcutaneous dupilumab (300 mg) or placebo every 2 weeks. The primary end point was the annualized rate of moderate or severe exacerbations. Key secondary end points, analyzed in a hierarchical manner to adjust for multiplicity, included the changes from baseline in the prebronchodilator forced expiratory volume in 1 second (FEV1) at weeks 12 and 52 and in the St. George's Respiratory Questionnaire (SGRQ; scores range from 0 to 100, with lower scores indicating better quality of life) total score at week 52. RESULTS: A total of 935 patients underwent randomization: 470 were assigned to the dupilumab group and 465 to the placebo group. As prespecified, the primary analysis was performed after a positive interim analysis and included all available data for the 935 participants, 721 of whom were included in the analysis at week 52. The annualized rate of moderate or severe exacerbations was 0.86 (95% confidence interval [CI], 0.70 to 1.06) with dupilumab and 1.30 (95% CI, 1.05 to 1.60) with placebo; the rate ratio as compared with placebo was 0.66 (95% CI, 0.54 to 0.82; P<0.001). The prebronchodilator FEV1 increased from baseline to week 12 with dupilumab (least-squares mean change, 139 ml [95% CI, 105 to 173]) as compared with placebo (least-squares mean change, 57 ml [95% CI, 23 to 91]), with a significant least-squares mean difference at week 12 of 82 ml (P<0.001) and at week 52 of 62 ml (P = 0.02). No significant between-group difference was observed in the change in SGRQ scores from baseline to 52 weeks. The incidence of adverse events was similar in the two groups and consistent with the established profile of dupilumab. CONCLUSIONS: In patients with COPD and type 2 inflammation as indicated by elevated blood eosinophil counts, dupilumab was associated with fewer exacerbations and better lung function than placebo. (Funded by Sanofi and Regeneron Pharmaceuticals; NOTUS ClinicalTrials.gov number, NCT04456673.).


Assuntos
Anticorpos Monoclonais Humanizados , Eosinófilos , Doença Pulmonar Obstrutiva Crônica , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Método Duplo-Cego , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Contagem de Leucócitos , Volume Expiratório Forçado/efeitos dos fármacos , Qualidade de Vida , Injeções Subcutâneas , Inflamação/tratamento farmacológico , Inflamação/sangue
7.
Cell ; 148(5): 896-907, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22341455

RESUMO

To determine the role of telomere dysfunction and telomerase reactivation in generating pro-oncogenic genomic events and in carcinoma progression, an inducible telomerase reverse transcriptase (mTert) allele was crossed onto a prostate cancer-prone mouse model null for Pten and p53 tumor suppressors. Constitutive telomerase deficiency and associated telomere dysfunction constrained cancer progression. In contrast, telomerase reactivation in the setting of telomere dysfunction alleviated intratumoral DNA-damage signaling and generated aggressive cancers with rearranged genomes and new tumor biological properties (bone metastases). Comparative oncogenomic analysis revealed numerous recurrent amplifications and deletions of relevance to human prostate cancer. Murine tumors show enrichment of the TGF-ß/SMAD4 network, and genetic validation studies confirmed the cooperative roles of Pten, p53, and Smad4 deficiencies in prostate cancer progression, including skeletal metastases. Thus, telomerase reactivation in tumor cells experiencing telomere dysfunction enables full malignant progression and provides a mechanism for acquisition of cancer-relevant genomic events endowing new tumor biological capabilities.


Assuntos
Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Telomerase/metabolismo , Telômero/metabolismo , Animais , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Cruzamentos Genéticos , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Feminino , Instabilidade Genômica , Humanos , Masculino , Camundongos , Proteína Supressora de Tumor p53/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(10): e2309957121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422022

RESUMO

Hypoxia signaling influences tumor development through both cell-intrinsic and -extrinsic pathways. Inhibiting hypoxia-inducible factor (HIF) function has recently been approved as a cancer treatment strategy. Hence, it is important to understand how regulators of HIF may affect tumor growth under physiological conditions. Here we report that in aging mice factor-inhibiting HIF (FIH), one of the most studied negative regulators of HIF, is a haploinsufficient suppressor of spontaneous B cell lymphomas, particular pulmonary B cell lymphomas. FIH deficiency alters immune composition in aged mice and creates a tumor-supportive immune environment demonstrated in syngeneic mouse tumor models. Mechanistically, FIH-defective myeloid cells acquire tumor-supportive properties in response to signals secreted by cancer cells or produced in the tumor microenvironment with enhanced arginase expression and cytokine-directed migration. Together, these data demonstrate that under physiological conditions, FIH plays a key role in maintaining immune homeostasis and can suppress tumorigenesis through a cell-extrinsic pathway.


Assuntos
Linfoma de Células B , Proteínas Repressoras , Animais , Camundongos , Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Repressoras/metabolismo , Microambiente Tumoral
9.
N Engl J Med ; 389(3): 205-214, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37272521

RESUMO

BACKGROUND: In some patients with chronic obstructive pulmonary disease (COPD), type 2 inflammation may increase exacerbation risk and may be indicated by elevated blood eosinophil counts. Dupilumab, a fully human monoclonal antibody, blocks the shared receptor component for interleukin-4 and interleukin-13, key drivers of type 2 inflammation. METHODS: In a phase 3, double-blind, randomized trial, we assigned patients with COPD who had a blood eosinophil count of at least 300 per microliter and an elevated exacerbation risk despite the use of standard triple therapy to receive dupilumab (300 mg) or placebo subcutaneously once every 2 weeks. The primary end point was the annualized rate of moderate or severe exacerbations of COPD. Key secondary and other end points that were corrected for multiplicity were the change in the prebronchodilator forced expiratory volume in 1 second (FEV1) and in the scores on the St. George's Respiratory Questionnaire (SGRQ; range, 0 to 100, with lower scores indicating a better quality of life) and the Evaluating Respiratory Symptoms in COPD (E-RS-COPD; range, 0 to 40, with lower scores indicating less severe symptoms). RESULTS: A total of 939 patients underwent randomization: 468 to the dupilumab group and 471 to the placebo group. The annualized rate of moderate or severe exacerbations was 0.78 (95% confidence interval [CI], 0.64 to 0.93) with dupilumab and 1.10 (95% CI, 0.93 to 1.30) with placebo (rate ratio, 0.70; 95% CI, 0.58 to 0.86; P<0.001). The prebronchodilator FEV1 increased from baseline to week 12 by a least-squares (LS) mean of 160 ml (95% CI, 126 to 195) with dupilumab and 77 ml (95% CI, 42 to 112) with placebo (LS mean difference, 83 ml; 95% CI, 42 to 125; P<0.001), a difference that was sustained through week 52. At week 52, the SGRQ score had improved by an LS mean of -9.7 (95% CI, -11.3 to -8.1) with dupilumab and -6.4 (95% CI, -8.0 to -4.8) with placebo (LS mean difference, -3.4; 95% CI, -5.5 to -1.3; P = 0.002). The E-RS-COPD score at week 52 had improved by an LS mean of -2.7 (95% CI, -3.2 to -2.2) with dupilumab and -1.6 (95% CI, -2.1 to -1.1) with placebo (LS mean difference, -1.1; 95% CI, -1.8 to -0.4; P = 0.001). The numbers of patients with adverse events that led to discontinuation of dupilumab or placebo, serious adverse events, and adverse events that led to death were balanced in the two groups. CONCLUSIONS: Among patients with COPD who had type 2 inflammation as indicated by elevated blood eosinophil counts, those who received dupilumab had fewer exacerbations, better lung function and quality of life, and less severe respiratory symptoms than those who received placebo. (Funded by Sanofi and Regeneron Pharmaceuticals; BOREAS ClinicalTrials.gov number, NCT03930732.).


Assuntos
Anticorpos Monoclonais Humanizados , Eosinófilos , Doença Pulmonar Obstrutiva Crônica , Humanos , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Método Duplo-Cego , Eosinófilos/imunologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/imunologia , Qualidade de Vida , Inflamação/classificação , Inflamação/imunologia
10.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701420

RESUMO

The relationship between genotype and fitness is fundamental to evolution, but quantitatively mapping genotypes to fitness has remained challenging. We propose the Phenotypic-Embedding theorem (P-E theorem) that bridges genotype-phenotype through an encoder-decoder deep learning framework. Inspired by this, we proposed a more general first principle for correlating genotype-phenotype, and the P-E theorem provides a computable basis for the application of first principle. As an application example of the P-E theorem, we developed the Co-attention based Transformer model to bridge Genotype and Fitness model, a Transformer-based pre-train foundation model with downstream supervised fine-tuning that can accurately simulate the neutral evolution of viruses and predict immune escape mutations. Accordingly, following the calculation path of the P-E theorem, we accurately obtained the basic reproduction number (${R}_0$) of SARS-CoV-2 from first principles, quantitatively linked immune escape to viral fitness and plotted the genotype-fitness landscape. The theoretical system we established provides a general and interpretable method to construct genotype-phenotype landscapes, providing a new paradigm for studying theoretical and computational biology.


Assuntos
COVID-19 , Aprendizado Profundo , Genótipo , Fenótipo , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Humanos , COVID-19/virologia , COVID-19/genética , COVID-19/imunologia , Biologia Computacional/métodos , Algoritmos , Aptidão Genética
11.
Cell ; 145(7): 1023-35, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21703447

RESUMO

Barrett's esophagus is an intestine-like metaplasia and precursor of esophageal adenocarcinoma. Triggered by gastroesophageal reflux disease, the origin of this metaplasia remains unknown. p63-deficient mice, which lack squamous epithelia, may model acid-reflux damage. We show here that p63 null embryos rapidly develop intestine-like metaplasia with gene expression profiles similar to Barrett's metaplasia. We track its source to a unique embryonic epithelium that is normally undermined and replaced by p63-expressing cells. Significantly, we show that a discrete population of these embryonic cells persists in adult mice and humans at the squamocolumnar junction, the source of Barrett's metaplasia. We show that upon programmed damage to the squamous epithelium, these embryonic cells migrate toward adjacent, specialized squamous cells in a process that may recapitulate early Barrett's. Our findings suggest that certain precancerous lesions, such as Barrett's, initiate not from genetic alterations but from competitive interactions between cell lineages driven by opportunity.


Assuntos
Esôfago de Barrett/patologia , Esôfago/patologia , Animais , Esôfago de Barrett/embriologia , Perfilação da Expressão Gênica , Humanos , Intestino Delgado/citologia , Metaplasia , Camundongos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transativadores/genética , Transativadores/metabolismo
12.
Nature ; 582(7812): 389-394, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32349120

RESUMO

Sudden, large-scale and diffuse human migration can amplify localized outbreaks of disease into widespread epidemics1-4. Rapid and accurate tracking of aggregate population flows may therefore be epidemiologically informative. Here we use 11,478,484 counts of mobile phone data from individuals leaving or transiting through the prefecture of Wuhan between 1 January and 24 January 2020 as they moved to 296 prefectures throughout mainland China. First, we document the efficacy of quarantine in ceasing movement. Second, we show that the distribution of population outflow from Wuhan accurately predicts the relative frequency and geographical distribution of infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) until 19 February 2020, across mainland China. Third, we develop a spatio-temporal 'risk source' model that leverages population flow data (which operationalize the risk that emanates from epidemic epicentres) not only to forecast the distribution of confirmed cases, but also to identify regions that have a high risk of transmission at an early stage. Fourth, we use this risk source model to statistically derive the geographical spread of COVID-19 and the growth pattern based on the population outflow from Wuhan; the model yields a benchmark trend and an index for assessing the risk of community transmission of COVID-19 over time for different locations. This approach can be used by policy-makers in any nation with available data to make rapid and accurate risk assessments and to plan the allocation of limited resources ahead of ongoing outbreaks.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Surtos de Doenças/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Dinâmica Populacional/estatística & dados numéricos , Análise Espaço-Temporal , Viagem/estatística & dados numéricos , COVID-19 , China/epidemiologia , Cidades/epidemiologia , Infecções por Coronavirus/diagnóstico , Conjuntos de Dados como Assunto , Mapeamento Geográfico , Humanos , Aplicativos Móveis , Modelos Biológicos , Pandemias , Pneumonia Viral/diagnóstico , Saúde Pública/estatística & dados numéricos
13.
Nature ; 579(7797): 51-55, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132691

RESUMO

A wide range of metals exhibit anomalous electrical and thermodynamic properties when tuned to a quantum critical point (QCP), although the origins of such strange metals have posed a long-standing mystery. The frequent association of strange metals with unconventional superconductivity and antiferromagnetic QCPs1-4 has led to the belief that they are highly entangled quantum states5. By contrast, ferromagnets are regarded as an unlikely setting for strange metals, because they are weakly entangled and their QCPs are often interrupted by competing phases or first-order phase transitions6-8. Here we provide evidence that the pure ferromagnetic Kondo lattice9,10 CeRh6Ge4 becomes a strange metal at a pressure-induced QCP. Measurements of the specific heat and resistivity under pressure demonstrate that the ferromagnetic transition is continuously suppressed to zero temperature, revealing a strange-metal behaviour around the QCP. We argue that strong magnetic anisotropy has a key role in this process, injecting entanglement in the form of triplet resonating valence bonds into the ordered ferromagnet. We show that a singular transformation in the patterns of the entanglement between local moments and conduction electrons, from triplet resonating valence bonds to Kondo-entangled singlet pairs at the QCP, causes a jump in the Fermi surface volume-a key driver of strange-metallic behaviour. Our results open up a direction for research into ferromagnetic quantum criticality and establish an alternative setting for the strange-metal phenomenon. Most importantly, strange-metal behaviour at a ferromagnetic QCP suggests that quantum entanglement-not the destruction of antiferromagnetism-is the common driver of the varied behaviours of strange metals.

14.
Nature ; 580(7801): 93-99, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238934

RESUMO

Prostate cancer is the second most common cancer in men worldwide1. Over the past decade, large-scale integrative genomics efforts have enhanced our understanding of this disease by characterizing its genetic and epigenetic landscape in thousands of patients2,3. However, most tumours profiled in these studies were obtained from patients from Western populations. Here we produced and analysed whole-genome, whole-transcriptome and DNA methylation data for 208 pairs of tumour tissue samples and matched healthy control tissue from Chinese patients with primary prostate cancer. Systematic comparison with published data from 2,554 prostate tumours revealed that the genomic alteration signatures in Chinese patients were markedly distinct from those of Western cohorts: specifically, 41% of tumours contained mutations in FOXA1 and 18% each had deletions in ZNF292 and CHD1. Alterations of the genome and epigenome were correlated and were predictive of disease phenotype and progression. Coding and noncoding mutations, as well as epimutations, converged on pathways that are important for prostate cancer, providing insights into this devastating disease. These discoveries underscore the importance of including population context in constructing comprehensive genomic maps for disease.


Assuntos
Povo Asiático/genética , Epigênese Genética , Epigenômica , Genoma Humano/genética , Genômica , Mutação , Neoplasias da Próstata/classificação , Neoplasias da Próstata/genética , Proteínas de Transporte/genética , Transformação Celular Neoplásica/genética , China , Estudos de Coortes , DNA Helicases/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Neoplasias da Próstata/patologia , RNA-Seq , Transcriptoma/genética
15.
Nature ; 578(7794): 306-310, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31969702

RESUMO

Proteins of the bromodomain and extra-terminal (BET) domain family are epigenetic readers that bind acetylated histones through their bromodomains to regulate gene transcription. Dual-bromodomain BET inhibitors (DbBi) that bind with similar affinities to the first (BD1) and second (BD2) bromodomains of BRD2, BRD3, BRD4 and BRDt have displayed modest clinical activity in monotherapy cancer trials. A reduced number of thrombocytes in the blood (thrombocytopenia) as well as symptoms of gastrointestinal toxicity are dose-limiting adverse events for some types of DbBi1-5. Given that similar haematological and gastrointestinal defects were observed after genetic silencing of Brd4 in mice6, the platelet and gastrointestinal toxicities may represent on-target activities associated with BET inhibition. The two individual bromodomains in BET family proteins may have distinct functions7-9 and different cellular phenotypes after pharmacological inhibition of one or both bromodomains have been reported10,11, suggesting that selectively targeting one of the bromodomains may result in a different efficacy and tolerability profile compared with DbBi. Available compounds that are selective to individual domains lack sufficient potency and the pharmacokinetics properties that are required for in vivo efficacy and tolerability assessment10-13. Here we carried out a medicinal chemistry campaign that led to the discovery of ABBV-744, a highly potent and selective inhibitor of the BD2 domain of BET family proteins with drug-like properties. In contrast to the broad range of cell growth inhibition induced by DbBi, the antiproliferative activity of ABBV-744 was largely, but not exclusively, restricted to cell lines of acute myeloid leukaemia and prostate cancer that expressed the full-length androgen receptor (AR). ABBV-744 retained robust activity in prostate cancer xenografts, and showed fewer platelet and gastrointestinal toxicities than the DbBi ABBV-07514. Analyses of RNA expression and chromatin immunoprecipitation followed by sequencing revealed that ABBV-744 displaced BRD4 from AR-containing super-enhancers and inhibited AR-dependent transcription, with less impact on global transcription compared with ABBV-075. These results underscore the potential value of selectively targeting the BD2 domain of BET family proteins for cancer therapy.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Domínios Proteicos/efeitos dos fármacos , Piridinas/farmacologia , Pirróis/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Piridinas/efeitos adversos , Piridinas/toxicidade , Pirróis/efeitos adversos , Pirróis/toxicidade , Ratos , Receptores Androgênicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Proc Natl Acad Sci U S A ; 120(42): e2306710120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37824525

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic and the measures taken by authorities to control its spread have altered human behavior and mobility patterns in an unprecedented way. However, it remains unclear whether the population response to a COVID-19 outbreak varies within a city or among demographic groups. Here, we utilized passively recorded cellular signaling data at a spatial resolution of 1 km × 1 km for over 5 million users and epidemiological surveillance data collected during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 outbreak from February to June 2022 in Shanghai, China, to investigate the heterogeneous response of different segments of the population at the within-city level and examine its relationship with the actual risk of infection. Changes in behavior were spatially heterogenous within the city and population groups and associated with both the infection incidence and adopted interventions. We also found that males and individuals aged 30 to 59 y old traveled more frequently, traveled longer distances, and their communities were more connected; the same groups were also associated with the highest SARS-CoV-2 incidence. Our results highlight the heterogeneous behavioral change of the Shanghai population to the SARS-CoV-2 Omicron BA.2 outbreak and the effect of heterogenous behavior on the spread of COVID-19, both spatially and demographically. These findings could be instrumental for the design of targeted interventions for the control and mitigation of future outbreaks of COVID-19, and, more broadly, of respiratory pathogens.


Assuntos
COVID-19 , Masculino , Humanos , COVID-19/epidemiologia , China/epidemiologia , SARS-CoV-2 , Surtos de Doenças , Processos Grupais
17.
Mol Cell Proteomics ; 22(6): 100551, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37076047

RESUMO

Esophageal cancer is the seventh most common cancer in the world. Although traditional treatment methods such as radiotherapy and chemotherapy have good effects, their side effects and drug resistance remain problematic. The repositioning of drug function provides new ideas for the research and development of anticancer drugs. We previously showed that the Food and Drug Administration-approved drug sulconazole can effectively inhibit the growth of esophageal cancer cells, but its molecular mechanism is not clear. Here, our study demonstrated that sulconazole had a broad spectrum of anticancer effects. It can not only inhibit the proliferation but also inhibit the migration of esophageal cancer cells. Both transcriptomic sequencing and proteomic sequencing showed that sulconazole could promote various types of programmed cell death and inhibit glycolysis and its related pathways. Experimentally, we found that sulconazole induced apoptosis, pyroptosis, necroptosis, and ferroptosis. Mechanistically, sulconazole triggered mitochondrial oxidative stress and inhibited glycolysis. Finally, we showed that low-dose sulconazole can increase radiosensitivity of esophageal cancer cells. Taken together, these new findings provide strong laboratory evidence for the clinical application of sulconazole in esophageal cancer.


Assuntos
Neoplasias Esofágicas , Proteômica , Humanos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Tolerância a Radiação , Estresse Oxidativo , Apoptose , Glicólise
18.
Proc Natl Acad Sci U S A ; 119(46): e2214569119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343225

RESUMO

Immunocyte infiltration and cytotoxicity play critical roles in both inflammation and immunotherapy. However, current cancer immunotherapy screening methods overlook the capacity of the T cells to penetrate the tumor stroma, thereby significantly limiting the development of effective treatments for solid tumors. Here, we present an automated high-throughput microfluidic platform for simultaneous tracking of the dynamics of T cell infiltration and cytotoxicity within the 3D tumor cultures with a tunable stromal makeup. By recourse to a clinical tumor-infiltrating lymphocyte (TIL) score analyzer, which is based on a clinical data-driven deep learning method, our platform can evaluate the efficacy of each treatment based on the scoring of T cell infiltration patterns. By screening a drug library using this technology, we identified an epigenetic drug (lysine-specific histone demethylase 1 inhibitor, LSD1i) that effectively promoted T cell tumor infiltration and enhanced treatment efficacy in combination with an immune checkpoint inhibitor (anti-PD1) in vivo. We demonstrated an automated system and strategy for screening immunocyte-solid tumor interactions, enabling the discovery of immuno- and combination therapies.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Microfluídica/métodos , Detecção Precoce de Câncer , Imunoterapia/métodos , Linfócitos do Interstício Tumoral , Fatores Imunológicos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
19.
Genes Dev ; 31(23-24): 2337-2342, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352019

RESUMO

SMAD4 constrains progression of Pten-null prostate cancer and serves as a common downstream node of transforming growth factor ß (TGFß) and bone morphogenetic protein (BMP) pathways. Here, we dissected the roles of TGFß receptor II (TGFBR2) and BMP receptor II (BMPR2) using a Pten-null prostate cancer model. These studies demonstrated that the molecular actions of TGFBR2 result in both SMAD4-dependent constraint of proliferation and SMAD4-independent activation of apoptosis. In contrast, BMPR2 deletion extended survival relative to Pten deletion alone, establishing its promoting role in BMP6-driven prostate cancer progression. These analyses reveal the complexity of TGFß-BMP signaling and illuminate potential therapeutic targets for prostate cancer.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Neoplasias da Próstata/fisiopatologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genótipo , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Proteína Smad4/genética , Proteína Smad4/metabolismo
20.
Genes Dev ; 31(1): 18-33, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096186

RESUMO

The intratumor microenvironment generates phenotypically distinct but interconvertible malignant cell subpopulations that fuel metastatic spread and therapeutic resistance. Whether different microenvironmental cues impose invasive or therapy-resistant phenotypes via a common mechanism is unknown. In melanoma, low expression of the lineage survival oncogene microphthalmia-associated transcription factor (MITF) correlates with invasion, senescence, and drug resistance. However, how MITF is suppressed in vivo and how MITF-low cells in tumors escape senescence are poorly understood. Here we show that microenvironmental cues, including inflammation-mediated resistance to adoptive T-cell immunotherapy, transcriptionally repress MITF via ATF4 in response to inhibition of translation initiation factor eIF2B. ATF4, a key transcription mediator of the integrated stress response, also activates AXL and suppresses senescence to impose the MITF-low/AXL-high drug-resistant phenotype observed in human tumors. However, unexpectedly, without translation reprogramming an ATF4-high/MITF-low state is insufficient to drive invasion. Importantly, translation reprogramming dramatically enhances tumorigenesis and is linked to a previously unexplained gene expression program associated with anti-PD-1 immunotherapy resistance. Since we show that inhibition of eIF2B also drives neural crest migration and yeast invasiveness, our results suggest that translation reprogramming, an evolutionarily conserved starvation response, has been hijacked by microenvironmental stress signals in melanoma to drive phenotypic plasticity and invasion and determine therapeutic outcome.


Assuntos
Plasticidade Celular/genética , Reprogramação Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Biossíntese de Proteínas/genética , Animais , Microambiente Celular , Evolução Molecular , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutamina/farmacologia , Humanos , Imunoterapia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Invasividade Neoplásica/genética , Crista Neural/citologia , Fenótipo , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA