Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(1): 24, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236415

RESUMO

KEY MESSAGE: A novel quantitative trait locus qIGL1, which performed a positive function in regulating grain length in rice, was cloned by the map-based cloning approach; further studies revealed that it corresponded to LOC_Os03g30530, and the IGL1 appeared to contribute to lengthening and widening of the cells on the surface of grain hulls. Grain length is a prominent determinant for grain weight and appearance quality of rice. In this study, we conducted quantitative trait locus mapping to determine a genomic interval responsible for a long-grain phenotype observed in a japonica cultivar HD385. This led to the identification of a novel QTL for grain length on chromosome 3, named qIGL1 (for Increased Grain Length 1); the HD385 (Handao 385)-derived allele showed enhancement effects on grain length, and such an allele as well as NIP (Nipponbare)-derived allele was designated qigl1 HD385 and qIGL1NIP, respectively. Genetic analysis revealed that the qigl1HD385 allele displayed semidominant effects on grain length. Fine mapping further narrowed down the qIGL1 to an ~ 70.8-kb region containing 9 open reading frames (ORFs). A comprehensive analysis indicated that LOC_Os03g30530, which corresponded to ORF6 and carried base substitutions and deletions in HD385 relative to NIP, thereby causing changes or losses of amino-acid residues, was the true gene for qIGL1. Comparison of grain traits between a pair of near-isogenic lines (NILs), termed NIL-igl1HD385 and NIL-IGL1NIP, discovered that introduction of the igl1HD385 into the NIP background significantly resulted in the elevations of grain length and 1000-grain weight. Closer inspection of grain surfaces revealed that the cell length and width in the longitudinal direction were significantly longer and greater, respectively, in NIL-igl1HD385 line compared with in NIL-IGL1NIP line. Hence, our studies identified a new semidominant natural allele contributing to the increase of grain length and further shed light on the regulatory mechanisms of grain length.


Assuntos
Oryza , Locos de Características Quantitativas , Oryza/genética , Alelos , Mapeamento Cromossômico , Aminoácidos , Grão Comestível/genética
2.
Biochem Biophys Res Commun ; 609: 1-8, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35405396

RESUMO

RNA-directed DNA methylation (RdDM) and ROS1-dependent active DNA demethylation pathways are antagonistic processes that dynamically regulate site-specific methylation. In this study, we obtained a mutant with reduced luciferase (LUC) luminescence by genetic screening, which was named rll5-1 (for reduced LUC luminescence 5-1). The rll5-1 mutant showed narrower, frizzled and curly leaves, and the low-LUC-luminescence phenotype in the rll5-1 mutant can be largely restored by DNA methylation inhibitor 5-Aza-2'-deoxycytidine. Map-based cloning coupled with genome resequencing data revealed that a nucleotide substitution of G to A was found at the 124th bp of ORF of At4G10190, leading to an aspartate-to-asparagine change at position 42 in such a protein. Bisulfite sequencing data indicated that DNA methylation of 3' region of the double 35S promoter that drives the LUC expression was appreciably increased. Further analysis revealed that there were 4747 hypo-DMRs and 936 hyper-DMRs found in the rll5-1 genome, and the hypo-DMRs was predominantly distributed on TEs, which appeared to stem from the downregulation of a few RdDM pathway genes and DNA methyltransferase genes. Closer inspection demonstrated that there were 1229 hypo-DMRs commonly shared among rll5-1, nrpd1-3 and nrpe1-11, and a total of 1349 hypo-DMRs were common to rll5-1 and cmt2 mutants. Thus, these studies demonstrate the roles of RLL5 in preventing transgene silencing and in maintaining genome-wide DNA methylation in a direct/indirect or locus-specific manner.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilação de DNA , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA/metabolismo , Transgenes
3.
J Integr Plant Biol ; 64(1): 87-104, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34859586

RESUMO

Arabidopsis methylation elevated mutant 1 (mem1) mutants have elevated levels of global DNA methylation. In this study, such mutant alleles showed increased sensitivity to methyl methanesulfonate (MMS). In mem1 mutants, an assortment of genes engaged in DNA damage response (DDR), especially DNA-repair-associated genes, were largely upregulated without MMS treatment, suggestive of activation of the DDR pathway in them. Following MMS treatment, expression levels of multiple DNA-repair-associated genes in mem1 mutants were generally lower than in Col-0 plants, which accounted for the MMS-sensitive phenotype of the mem1 mutants. A group of DNA methylation pathway genes were upregulated in mem1 mutants under non-MMS-treated conditions, causing elevated global DNA methylation, especially in RNA-directed DNA methylation (RdDM)-targeted regions. Moreover, MEM1 seemed to help ATAXIA-TELANGIECTASIA MUTATED (ATM) and/or SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) to fully activate/suppress transcription of a subset of genes regulated simultaneously by MEM1 and ATM and/or SOG1, because expression of such genes decreased/increased consistently in mem1 and atm and/or sog1 mutants, but the decreases/increases in the mem1 mutants were not as dramatic as in the atm and/or sog1 mutants. Thus, our studies reveals roles of MEM1 in safeguarding genome, and interrelationships among DNA damage, activation of DDR, DNA methylation/demethylation, and DNA repair.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Dano ao DNA/genética , Metilação de DNA/genética , Reparo do DNA/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
4.
Plant Cell Physiol ; 62(9): 1409-1422, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34185870

RESUMO

Previous studies had demonstrated that in Arabidopsis, IDM3 is involved in ROS1-mediated DNA demethylation pathway, and SUVH-SDJ complex functions as a DNA methylation reader complex for enhancing gene transcription, which presumably recruits ROS1 to the promoters of target genes for DNA demethylation. Here, our analyses, however, showed that the IDM3 and SDJ1/2/3, the components of the SUVH-SDJ complex, are implicated in establishing and/or maintaining DNA methylation as well through DDR (DRD1-DMS3-RDM1) complex. idm3-3 or sdj1/2/3 mutations led to genome-wide DNA hypomethylation, and both mutants shared a large number of common hypo-DMRs (Differentially Methylated Regions) with rdm1-4 and dms3-4, suggesting that IDM3 and SDJ1/2/3 help establish and/or maintain DNA methylation, mediated by RdDM pathway, at a subset of genomic regions largely through DDR complex. IDM3 is able to strongly interact with RDM1 and DMS3, but weakly with SDJ1 and SDJ3; SDJ1 and SDJ3 is capable of interacting separately with RDM1 and DMS3. Furthermore, comparisons of DNA methylation features in idm3-3 and sdj1/2/3 indicated that idm3-3 and sdj1/2/3 mutations make differential impacts on DNA methylation levels and patterns on a genome-wide scale, indicating that they are targeted to quite distinct genomic regions for aiding in DNA methylation. Further analyses on ChIP-seq data demonstrated that RDM1, DMS3 and NRPE1 are enriched in IDM3- and SDJ1/2/3-targted regions. Altogether, our results provide clear demonstration that IDM3 and SDJ1/2/3 play a part in establishing and/or maintaining DNA methylation of a group of genomic regions, through the DDR complex.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilação de DNA/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo
5.
Plant Cell Physiol ; 62(7): 1168-1184, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33836080

RESUMO

To discover new mutants conferring enhanced tolerance to drought stress, we screened a mutagenized upland rice (Oryza sativa) population (cv. IAPAR9) and identified a mutant, named idr1-1 (increased drought resistance 1-1), with obviously increased drought tolerance under upland field conditions. The idr1-1 mutant possessed a significantly enhanced ability to tolerate high-drought stresses. Map-based cloning revealed that the gene LOC_Os05g26890, residing in the mapping region of IDR1 locus, carried a single-base deletion in the idr1-1 mutant. IDR1 encodes the Gα subunit of the heterotrimeric G protein (also known as RGA1), and this protein was localized in nucleus and to plasma membrane or cell periphery. Further investigations indicated that the significantly increased drought tolerance in idr1-1 mutants stemmed from a range of physiological and morphological changes, including greater leaf potentials, increased proline contents, heightened leaf thickness and upregulation of antioxidant-synthesizing and drought-induced genes, under drought-stressed conditions. Especially, reactive oxygen species (ROS) production might be remarkably impaired, while ROS-scavenging ability appeared to be markedly enhanced due to significantly elevated expression of ROS-scavenging enzyme genes in idr1-1 mutants under drought-stressed conditions. In addition, idr1-1 mutants showed reduced expression of OsBRD1. Altogether, these results suggest that mutation of IDR1 leads to alterations in multiple layers of regulations, which ultimately leads to changes in the physiological and morphological traits and limiting of ROS levels, and thereby confers obviously increased drought tolerance to the idr1-1 mutant.


Assuntos
Genes de Plantas/genética , Oryza/genética , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Cloroplastos/metabolismo , Clonagem Molecular , Desidratação , Genes de Plantas/fisiologia , Mutação , Oryza/metabolismo , Oryza/fisiologia , Estresse Oxidativo , Proteínas de Plantas/fisiologia , Transcriptoma
6.
Plant Mol Biol ; 102(3): 307-322, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31902068

RESUMO

KEY MESSAGE: MEM1 participates in ROS1-mediated DNA demethylation pathway, and acts functionally as ROS3 to counteract the effects of RdDM pathway.mem1mutation leads to large numbers of hyper-DMRs inArabidopsisgenome. In higher plants, DNA methylation performs important functions in silencing transcribed genes and transposable elements (TEs). Active DNA demethylation mediated by REPRESSOR OF SILENCING 1 (ROS1) is able to antagonize the action of DNA methylation caused by RNA-directed DNA methylation (RdDM) pathway, which plays critical roles in keeping DNA methylation at a proper level. In this study, a new mutant named mem1 (for methylation elevated mutant 1) was isolated from a genetic screen of T-DNA insertional mutant population for lines with elevated DNA methylation at a particular locus through Chop-PCR method. MEM1 possesses a Zf-C3HC domain, and is localized in nucleus as well as highly expressed in cotyledons. Whole-genome bisulfite sequencing data showed that knockout mutation of MEM1 leads to 4519 CG, 1793 CHG and 12739 CHH hyper-DMRs (for differentially methylated regions). Further analysis indicated that there are 2751, 2216 and 2042 overlapped CG hyper-DMRs between mem1-1and three mutants, i.e. ros1-4, rdd and ros3-2, respectively; 797, 2514, and 6766 overlapped CHH hyper-DMRs were observed between mem1-1 and three such mutants, respectively; mem1 nrpd1-3 and mem1 rdm1 double mutants showed nearly complete or partial loss of hypermethylation at 4 tested loci, suggesting that MEM1 performs similar functions as DNA glycosylase/lyases in counteracting excessive DNA methylation, and MEM1 plays important roles as REPRESSOR OF SILENCING 3 (ROS3) in erasing CHH methylation caused by the RdDM pathway. Together, these data demonstrate the involvement of MEM1 in ROS1-mediated DNA demethylation pathway and functional connections between MEM1 and ROS3.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Desmetilação do DNA , Núcleo Celular/metabolismo , Metilação de DNA , Elementos de DNA Transponíveis , Técnicas de Silenciamento de Genes , Inativação Gênica , Genoma de Planta , Mutação/genética , Proteínas Nucleares/genética , Filogenia , Plantas Geneticamente Modificadas , Proteínas de Ligação a RNA
7.
Mol Genet Genomics ; 295(1): 81-93, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31486938

RESUMO

DNA methylation pattern is found to be established by the combined actions of DNA methylation and demethylation. Compared to the DNA methylation pathway, DNA demethylation pathway, however, remains largely unknown. To better understand the DNA demethylation pathway, we performed genetic screening for Arabidopsis mutants with increased genomic DNA methylation levels through a 2 × 35S:LUC (LUC, luciferase) reporter system. A mutant with reduced LUC luminescence was identified by such a system, therefore named rll3-1 (for reduced LUC luminescence 3-1). The rll3-1 mutant exhibited pleiotropic developmental defects, such as delayed bolting as well as flowering, more branches, etc. By map-based cloning approach, rll3 locus that contains a single nuclear recessive mutation as revealed by the genetic analysis was mapped to a region between molecular markers CL102_B1 M1 and CL102_B3M1, which are located in bacterial artificial chromosome (BAC) clones F9P14 and F12K11, respectively, on chromosome 1. Chop-PCR analysis indicated that a total of seven tested loci displayed elevated DNA methylation levels. Whole-genome bisulfite sequencing further revealed 1536 loci exhibiting increased DNA methylation levels relative to Col-LUC control, among which there are 507 such loci overlapping between the rll3-1 and ros1-7 mutants, suggestive of a functional association between RLL3 and REPRESSOR OF SILENCING 1 (ROS1). Further investigations demonstrated that the expression levels of a few genes (like ROS1, IDM1, etc.), which are involved in DNA demethylation pathway, remained unchanged in the rll3-1 mutant, indicating that the increased DNA methylation levels in rll3-1 mutant are not attributable to downregulation of such genes. Taken together, our studies provide a demonstration of the involvement of RLL3 in the DNA demethylation pathway.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilação de DNA/genética , Desmetilação do DNA , Regulação para Baixo/genética , Mutação/genética
9.
J Plant Physiol ; 233: 20-30, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30576929

RESUMO

CROWDED NUCLEI (CRWN) family in Arabidopsis consists of four members, CRWN1 to CRWN4. It has been previously reported that the CRWN proteins are involved in the control of nuclear morphology and degradation of ABI5. In this study, however, we discover that CRWN-family proteins are not only involved in attenuating responsiveness to abscisic acid (ABA), but also implicated in inhibiting reactive oxygen species (ROS) production and DNA damage induced by genotoxic agent methyl methanesulfonate (MMS). Our results demonstrate that three crwn double mutants, i.e. crwn1 crwn3, crwn2 crwn3, and crwn2 crwn4, show slightly earlier leaf senescence, enhanced leaf cell death, and obvious overaccumulation of ROS under regular growth conditions. When treated with 0.15 µM ABA or 0.01% MMS, two double mutants, crwn1 crwn3 and crwn2 crwn3, exhibit significant decreased germination rates as well as leaf opening and greening rates. Moreover, subsequent investigations indicate that the MMS treatment strongly inhibits the growth of crwn mutant seedlings, while this inhibition is substantially relieved by imidazole (IMZ); by contrast, DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) has no effect on relief of the growth inhibition. Further studies reveal that under 0.01% MMS treatment conditions, crwn mutants, especially the three double mutants, accumulate more ROS compared to Col-0, and their genomic DNA suffers from more severe DNA damage relative to Col-0, which is indicated by significantly higher 8-oxo-7-hydrodeoxyguanosine (8-oxo dG) content as observed in the crwn mutants. Altogether, these data clearly demonstrate that the CRWN-family proteins play important roles in diminishing ROS accumulation and protecting genomic DNA against excessive oxidative damage caused by MMS.


Assuntos
Proteínas de Arabidopsis/fisiologia , Dano ao DNA , Proteínas Nucleares/fisiologia , Estresse Oxidativo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Morte Celular/fisiologia , Dano ao DNA/efeitos dos fármacos , DNA de Plantas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Metanossulfonato de Metila/farmacologia , Mutagênicos/farmacologia , Proteínas Nucleares/genética , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA