Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406299, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772710

RESUMO

The extent to which electrophores covalently bridged by a saturated linker are electrochemically independent was investigated considering the charge/spin duality of the electron and functionality of the electrophore as a spin carrier upon reduction. By combining computational modeling with electrochemical experiments, we investigated the mechanism by which tethered electrophores react together within 4,4'-oligo[n]methylene-bipyridinium assemblies (with n=2 to 5). We show that native dicationic electrophores (redox state Z=+2) are folded prior to electron injection into the system, allowing the emergence of supra-molecular orbitals (supra-MOs) likely to support the process of the reductive σ bond formation giving cyclomers. Indeed, for Z=+2, London Dispersion (LD) forces contribute to flatten the potential energy surface such that all-trans and folded conformers are approximately isoenergetic. Then, upon one-electron injection, for radical cations (Z=+1), LD forces significantly stabilize the folded conformers, except for the ethylene derivative deprived of supra-MOs. For radical cations equipped with supra-MOs, the unpaired electron is delocalized over both heterocycles through space. Cyclomer completion (Z=0) upon the second electron transfer occurs according to the inversion of redox potentials. This mechanism explains why intramolecular reactivity is favored and why pyridinium electrophores are not independent.

2.
Chemistry ; 27(71): 17889-17899, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34761431

RESUMO

The synergistic functioning of redox-active components that emerges from prototypical 2,2'-di(N-methylpyrid-4-ylium)-1,1'-biphenyl is described. Interestingly, even if a trans conformation of the native assembly is expected, due to electrostatic repulsion between cationic pyridinium units, we demonstrate that cis conformation is equally energy-stabilized on account of a peculiar LUMO (SupLUMO) that develops through space, encompassing the two pyridiniums in a single, made-in-one-piece, electronic entity (superelectrophoric behavior). This SupLUMO emergence, with the cis species as superelectrophore embodiment, originates in a sudden change of electronic structure. This finding is substantiated by insights from solid state (single-crystal X-ray diffraction) and solution (NOE NMR and UV-vis-NIR spectroelectrochemistry) studies, combined with electronic structure computations. Electrochemistry shows that electron transfers are so strongly correlated that two-electron reduction manifests itself as a single-step process with a large potential inversion consistent with inner creation of a carbon-carbon bond (digital simulation). Besides, absence of reductive formation of dimers is a further indication of a preferential intramolecular reactivity determined by the SupLUMO interaction (cis isomer pre-organization). The redox-gated covalent bond, serving as electron reservoir, was studied via atropisomerism of the reduction product (VT NMR study). The overall picture derived from this in-depth study of 2,2'-di(N-methylpyrid-4-ylium)-1,1'-biphenyl proves that trans and cis species are worth considered as intrinsically sharply different, that is, as doubly-electrophoric and singly-superelectrophoric switchable assemblies, beyond conformational isomerism. Most importantly, the through-space-mediated SupLUMO may come in complement of other weak interactions encountered in Supramolecular Chemistry as a tool for the design of electroactive architectures.


Assuntos
Eletrônica , Cristalografia por Raios X , Eletroquímica , Espectroscopia de Ressonância Magnética , Conformação Molecular
3.
Angew Chem Int Ed Engl ; 60(9): 4732-4739, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33205862

RESUMO

Environmental control of single-molecule junction evolution and conductance was demonstrated for expanded pyridinium molecules by scanning tunneling microscopy break junction method and interpreted by quantum transport calculations including solvent molecules explicitly. Fully extended and highly conducting molecular junctions prevail in water environment as opposed to short and less conducting junctions formed in non-solvating mesitylene. A theoretical approach correctly models single-molecule conductance values considering the experimental junction length. Most pronounced difference in the molecular junction formation and conductance was identified for a molecule with the highest stabilization energy on the gold substrate confirming the importance of molecule-electrode interactions. Presented concept of tuning conductance through molecule-electrode interactions in the solvent-driven junctions can be used in the development of new molecular electronic devices.

4.
J Am Chem Soc ; 142(11): 5162-5176, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32101420

RESUMO

Molecular-level multielectron handling toward electrical storage is a worthwhile approach to solar energy harvesting. Here, a strategy which uses chemical bonds as electron reservoirs is introduced to demonstrate the new concept of "structronics" (a neologism derived from "structure" and "electronics"). Through this concept, we establish, synthesize, and thoroughly study two multicomponent "super-electrophores": 1,8-dipyridyliumnaphthalene, 2, and its N,N-bridged cyclophane-like analogue, 3. Within both of them, a covalent bond can be formed and subsequently broken electrochemically. These superelectrophores are based on two electrophoric (pyridinium) units that are, on purpose, spatially arranged by a naphthalene scaffold. A key characteristic of 2 and 3 is that they possess a LUMO that develops through space as the result of the interaction between the closely positioned electrophoric units. In the context of electron storage, this "super-LUMO" serves as an empty reservoir, which can be filled by a two-electron reduction, giving rise to an elongated C-C bond or "super-HOMO". Because of its weakened nature, this bond can undergo an electrochemically driven cleavage at a significantly more anodic-yet accessible-potential, thereby restoring the availability of the electron pair (reservoir emptying). In the representative case study of 2, an inversion of potential in both of the two-electron processes of bond formation and bond-cleavage is demonstrated. Overall, the structronic function is characterized by an electrochemical hysteresis and a chemical reversibility. This structronic superelectrophore can be viewed as the three-dimensional counterpart of benchmark methyl viologen (MV).

5.
Photochem Photobiol Sci ; 19(1): 105-113, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31930262

RESUMO

We report on the light-switch behaviour of two head-to-tail expanded bipyridinium species as a function of their interaction with calf thymus DNA and polynucleotides. In particular, both DNA and polynucleotides containing exclusively adenine or guanine moieties quench the luminescence of the fused expanded bipyridinium species. This behaviour has been rationalized demonstrating that a reductive photoinduced electron transfer process takes place involving both adenine or guanine moieties. The charge separated state so produced recombines in the tens of picoseconds. These results could help in designing new organic substrates for application in DNA probing technology and lab on chip-based sensing systems.


Assuntos
Sondas de DNA/química , DNA/análise , Corantes Fluorescentes/química , Imagem Óptica , Compostos de Piridínio/química , Animais , Bovinos , Sondas de DNA/síntese química , Corantes Fluorescentes/síntese química , Estrutura Molecular , Oxirredução , Compostos de Piridínio/síntese química , Espectroscopia de Luz Próxima ao Infravermelho , Raios Ultravioleta
6.
Phys Chem Chem Phys ; 22(36): 20673-20684, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32895673

RESUMO

The triangulenium dyes constitute a family of versatile chromophores whose impressive photo-absorption and emission properties are currently highlighted in numerous novel experimental applications. In this investigation, we provide a comprehensive TDDFT characterization of their spectroscopic properties elucidating the origin of their large and complex absorption and emission vibronic spectra spread over the (whole) visible region. More precisely, by benchmarking the performance of 10 commonly-used exchange-correlation density functionals belonging to different classes of approximation, we develop and validate a computational protocol allowing the accurate modeling of both the position and optical line-shape of their vibrationally-resolved absorption and emission band structures. We find that semilocal approximations provide the best estimate of the structure of the vibronic spectra, however they spuriously and strongly underestimate their position. We finally show that global-hybrid density functionals mixing between 20 and 30% of exact-like exchange are an excellent compromise to get a satisfactory estimate of both of these properties.

7.
Planta ; 249(5): 1645-1651, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30820649

RESUMO

MAIN CONCLUSION: Modulation of gene expression in roots of Brassica napus by silicon (Si) supply could allow plants to cope with future stresses. The origin of the beneficial effects of silicon (Si) in plants, especially when they are subject to stress, remains poorly understood. Some authors have shown that Si alleviates plant stress and consider that this is mainly due to a mechanical effect on the cell wall. In addition, the other studies have shown that Si can also affect gene expression and modulate a number of metabolic pathways, especially in plants cultivated under stress conditions. Previously, Haddad et al. (Front Plant Sci 9:5-16, 2018) showed that a pretreatment of Brassica napus plants with Si (1.7 mM) for 1 week alleviated the stress induced by N privation. These results suggest that this improved resistance in Si-treated plants might be due to the establishment of defense mechanisms prior to exposure to the N stress. The aim of the current work was to test this assumption in Brassica napus roots (where Si is mainly stored) using a transcriptomic approach via the RNA sequencing. Our results indicated that the Si supply leads to a modulation of the expression of genes in Brassica napus roots. Functional categorization of the differentially expressed genes demonstrated that numerous genes are involved in different metabolic pathways and especially in cell wall synthesis, phytohormone metabolism, and stress responses. All these results show that Si modifies the root metabolism of B. napus, which could allow a better adaptation to future stresses.


Assuntos
Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Silício/farmacologia , Brassica napus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
8.
Inorg Chem ; 58(9): 5807-5817, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31017774

RESUMO

Three new linearly arranged bichromophoric systems 1-3 have been prepared, and their photophysical properties have been studied, taking also advantage of femtosecond pump-probe transient absorption spectroscopy. The three compounds contain the same chromophores, that is a Ru(II)-terpy-like species and a fused expanded bipyridinium (FEBP) unit, separated by three different, variously methylated biphenylene-type bridges. The chromophores have been selected to be selectively addressable, and excitation involving the Ru-based or the FEBP-based dyes results in different excited-state decays. Upon Ru-based excitation at 570 nm, oxidative photoinduced electron transfer (OPET) takes place in 1-3 from the 3MLCT state; however, the charge-separated species does not accumulate, indicating that the charge recombination rate constant exceeds the OPET rate constant. Upon excitation of the organic dye at 400 nm, the FEBP-based 1π-π* level is prepared, which undergoes a series of intercomponent decay events, including (i) electron-exchange energy transfer leading to the MLCT manifold (SS-EnT), which successively decays according to 570 nm excitation, and (ii) reductive photoinduced electron transfer (RPET), leading to the preparation of the charge-separated (CS) state. Reductive PET, involving the FEBP-based singlet state, is much faster than oxidative PET, involving the MLCT triplet state, essentially because of driving force reasons. The rate constant of CR is intermediate between the rate constants of OPET and RPET, and this makes 1-3 capable to selectively read the 400 nm excitation as an active input to prepare the CS state, whereas excitation at wavelengths longer than 480 nm is inefficient to accumulate the CS state. Moreover, intriguing differences between the rate constants of the various processes in 1-3 have been analyzed and interpreted according to the superexchange theory for electron transfer. This allowed us to uncover the role of the electron-transfer and hole-transfer superexchange pathways in promoting the various intercomponent photoinduced decay processes occurring in 1-3.

9.
Langmuir ; 34(22): 6405-6412, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29751731

RESUMO

Adsorption properties of a series of redox-active expanded pyridinium molecules were studied at an electrified interface by cyclic and alternating current voltammetry methods. It was shown that the adsorbed state can sufficiently block N-pyramidalization of the pyridinium redox center of 2',6'-diphenyl-[4,1':4',4''-terpyridin]-1'-ium tetrafluoroborate (2), leading to a change of the mechanism from a single two-electron-transfer process to stepwise transfer of two electrons. Chemically locked molecules 1, 9-(pyridin-4-yl)benzo[ c]benzo[1,2]quinolizino[3,4,5,6- ija][1,6]naphthyridin-15-ium tetrafluoroborate (ring fusion), and 3, 3,5-dimethyl-2',6'-diphenyl-[4,1':4',4''-terpyridin]-1'-ium tetrafluoroborate (steric hindrance) do not enable N-pyramidalization of the redox center upon electron transfer (ET) and serve as references. It was shown that 1 follows Langmuir-type adsorption around a potential of zero charge and that 1-3 form a close-packed film with some repulsive interactions between individual molecules at potentials where ET takes place. It has been suggested that all three molecules lie flat on the electrode surface, with the lowest free energy of adsorption found for 2. Maximum surface concentration Γ* equal to (1.4 ± 0.1) × 10-10 mol·cm-2 was found for 1, (1.5 ± 0.1) × 10-10 mol·cm-2 for 2, and (1.6 ± 0.1) × 10-10 mol·cm-2 for 3. These findings will help to clarify the role of molecular contacts with conducting substrate in the single-molecule electron-transport measurements of 1-3 during the metal-molecule-metal junction formation process.

10.
J Am Chem Soc ; 137(35): 11349-64, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26280907

RESUMO

A combined electrochemical and theoretical study of a series of pyridinium-based electrophores, consisting of reference N-alkyl-2,4,6-triarylpyridiniums (1-3) and N-aryl-expanded pyridiniums (EPs), i.e. N-aryl-2,4,6-triarylpyridiniums (4-10), is presented with the aim of elucidating multifaceted mechanisms underpinning the complex electrophoric activity of fluxional EP systems. Series 1-10 constitutes a library of model electrophores showing an incremental variation of their composition, charge, and steric hindrance. By kinetic mapping of the first two heterogeneous electron transfers (ETs) of 1-10 and computational mapping, at the density functional theory level, of their electronic and geometrical features in various redox states, it is established that, depending on whether EPs are made of one (4, 5) or two "head-to-tail"-connected pyridinium rings (6-10), the nature of the redox-triggered distortions (when allowed) is different, namely, N-pyramidalization due to hybridization change in the former case versus saddle-shaped distortion originating from conflicting intramolecular interactions in the latter case (8-10). When skeletal relaxations are sterically hampered, zwitterionic states and electron delocalization with quinoidal features are promoted as alternative relaxation modes. It follows that "potential compression" is changed to "potential expansion" (i.e., a further separation of redox potentials) in single-pyridinium EPs (4, 5), whereas "potential inversion" (i.e., single-step two-electron transfer; 8-10) is changed to stepwise ETs of the Weitz type for two-pyridinium EPs (6, 7). Overall, kinetic rate constants not only consistently indicate the most prominent mechanistic aspects of the reduction pathways of EPs, but they are also instrumental in establishing EPs as a unique class of electrophores.

11.
Ecology ; 96(3): 788-99, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26236874

RESUMO

It has long been recognized that plant species and soil microorganisms. are tightly linked, but understanding how different species vary in their effects on soil is currently limited. In this study, we identified those. plant characteristics (identity, specific functional traits, or resource acquisition strategy) that were the best predictors of nitrification and denitrification processes. Ten plant populations representing eight species collected from three European grassland sites were chosen for their contrasting plant trait values and resource acquisition strategies. For each individual plant, leaf and root traits and the associated potential microbial activities (i.e., potential denitrification rate [DEA], maximal nitrification rate [NEA], and NH4+ affinity of the microbial community [NHScom]) were measured at two fertilization levels under controlled growth conditions. Plant traits were powerful predictors of plant-microbe interactions, but relevant plant traits differed in relation to the microbial function studied. Whereas denitrification was linked to the relative growth rate of plants, nitrification was strongly correlated to root trait characteristics (specific root length, root nitrogen concentration, and plant affinity for NH4+) linked to plant N cycling. The leaf economics spectrum (LES) that commonly serves as an indicator of resource acquisition strategies was not correlated to microbial activity. These results suggest that the LES alone is not a good predictor of microbial activity, whereas root traits appeared critical in understanding plant-microbe interactions.


Assuntos
Achillea/fisiologia , Nitrogênio/metabolismo , Poaceae/fisiologia , Microbiologia do Solo , Áustria , Desnitrificação , Inglaterra , França , Nitrificação , Solo/química
12.
Ann Bot ; 115(1): 107-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25471096

RESUMO

BACKGROUNDS AND AIMS: Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species' coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies. METHODS: Root uptake of [Formula: see text] and [Formula: see text], and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions. KEY RESULTS: Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for [Formula: see text]. CONCLUSIONS: The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits.


Assuntos
Compostos de Amônio/metabolismo , Nitratos/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Poaceae/fisiologia , Áustria , Meio Ambiente , França , Especificidade da Espécie , Reino Unido
13.
Inorg Chem ; 52(20): 11944-55, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24090453

RESUMO

The synthesis, characterization, redox behavior, and photophysical properties (both at room temperature in fluid solution and at 77 K in rigid matrix) of a series of four new molecular dyads (2-5) containing Ru(II)- or Os(II)-bis(terpyridine) subunits as chromophores and various expanded pyridinium subunits as electron acceptors are reported, along with the reference properties of a formerly reported dyad, 1. The molecular dyads 2-4 have been designed to have their (potentially emissive) triplet metal-to-ligand charge-transfer (MLCT) and charge-separated (CS) states close in energy, so that excited-state equilibration between these levels can take place. Such a situation is not shared by limit cases 1 and 5. For dyad 1, forward photoinduced electron transfer (time constant, 7 ps) and subsequent charge recombination (time constant, 45 ps) are evidenced, while for dyad 5, photoinduced electron transfer is thermodynamically forbidden so that MLCT decays are the only active deactivation processes. As regards 2-4, CS states are formed from MLCT states with time constants of a few dozens of picoseconds. However, for these latter species, such experimental time constants are not due to photoinduced charge separation but are related to the excited-state equilibration times. Comparative analysis of time constants for charge recombination from the CS states based on proper thermodynamic and kinetic models highlighted that, in spite of their apparently affiliated structures, dyads 1-4 do not constitute a homologous series of compounds as far as intercomponent electron transfer processes are concerned.

14.
Plants (Basel) ; 12(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375874

RESUMO

In many crops species, sulfur (S) deprivation negatively affects growth, seed yield quality and plant health. Furthermore, silicon (Si) is known to alleviate many nutritional stresses but the effects of Si supply on plants subjected to S deficiency remain unclear and poorly documented. The objective of this study was to evaluate whether Si supply would alleviate the negative effects of S deprivation on root nodulation and atmospheric dinitrogen (N2) fixation capacity in Trifolium incarnatum subjected (or not) to long-term S deficiency. For this, plants were grown for 63 days in hydroponic conditions with (500 µM) or without S and supplied (1.7 mM) or not with Si. The effects of Si on growth, root nodulation and N2 fixation and nitrogenase abundance in nodules have been measured. The most important beneficial effect of Si was observed after 63 days. Indeed, at this harvest time, a Si supply increased growth, the nitrogenase abundance in nodules and N2 fixation in S-fed and S-deprived plants while a beneficial effect on the number and total biomass of nodules was only observed in S-deprived plants. This study shows clearly for the first time that a Si supply alleviates negative effects of S deprivation in Trifolium incarnatum.

15.
J Am Chem Soc ; 134(5): 2691-705, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22200401

RESUMO

Contrary to 4,4'-dipyridinium (i.e., archetypal methyl viologen), which is reduced by two single-electron transfers (stepwise reduction), the 4,1'-dipyridinium isomer (so-called "head-to-tail" isomer) undergoes two electron transfers at apparently the same potential (single-step reduction). A combined theoretical and experimental study has been undertaken to establish that the latter electrochemical behavior, also observed for other polyarylpyridinium electrophores, is due to potential compression originating in a large structural rearrangement. Three series of branched expanded pyridiniums (EPs) were prepared: N-aryl-2,4,6-triphenylpyridiniums (Ar-TP), N-aryl-2,3,4,5,6-pentaphenylpyridiniums (Ar-XP), and N-aryl-3,5-dimethyl-2,4,6-triphenylpyridinium (Ar-DMTP). The intramolecular steric strain was tuned via N-pyridinio aryl group (Ar) phenyl (Ph), 4-pyridyl (Py), and 4-pyridylium (qPy) and their bulky 3,5-dimethyl counterparts, xylyl (Xy), lutidyl (Lu), and lutidylium (qLu), respectively. Ferrocenyl subunits as internal redox references were covalently appended to representative electrophores in order to count the electrons involved in EP-centered reduction processes. Depending on the steric constraint around the N-pyridinio site, the two-electron reduction is single-step (Ar = Ph, Py, qPy) or stepwise (Ar = Xy, Lu, qLu). This steric switching of the potential compression is accurately accounted for by ab initio modeling (Density Functional Theory, DFT) that proposes a mechanism for pyramidalization of the N(pyridinio) atom coupled with reduction. When the hybridization change of this atom is hindered (Ar = Xy, Lu, qLu), the first reduction is a one-electron process. Theory also reveals that the single-step two-electron reduction involves couples of redox isomers (electromers) displaying both the axial geometry of native EPs and the pyramidalized geometry of doubly reduced EPs. This picture is confirmed by a combined UV-vis-NIR spectroelectrochemical and time-dependent DFT study: comparison of in situ spectroelectrochemical data with the calculated electronic transitions makes it possible to both evidence the distortion and identify the predicted electromers, which play decisive roles in the electron-transfer mechanism. Last, this mechanism is further supported by in-depth analysis of the electronic structures of electrophores in their various reduction states (including electromeric forms).


Assuntos
Elétrons , Polímeros/química , Compostos de Piridínio/química , Estrutura Molecular , Oxirredução
16.
J Exp Bot ; 63(14): 5245-58, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22844096

RESUMO

N-fertilizer use efficiencies are affected by their chemical composition and suffer from potential N-losses by volatilization. In a field lysimeter experiment, (15)N-labelled fertilizers were used to follow N uptake by Brassica napus L. and assess N-losses by volatilization. Use of urea with NBPT (urease inhibitor) showed the best efficiency with the lowest N losses (8% of N applied compared with 25% with urea alone). Plants receiving ammonium sulphate, had similar yield achieved through a better N mobilization from vegetative tissues to the seeds, despite a lower N uptake resulting from a higher volatilization (43% of applied N). Amounts of (15)N in the plant were also higher when plants were fertilized with ammonium nitrate but N-losses reached 23% of applied N. In parallel, hydroponic experiments showed a deleterious effect of ammonium and urea on the growth of oilseed rape. This was alleviated by the nitrate supply, which was preferentially taken up. B. napus was also characterized by a very low potential for urea uptake. BnDUR3 and BnAMT1, encoding urea and ammonium transporters, were up-regulated by urea, suggesting that urea-grown plants suffered from nitrogen deficiency. The results also suggested a role for nitrate as a signal for the expression of BnDUR3, in addition to its role as a major nutrient. Overall, the results of the hydroponic study showed that urea itself does not contribute significantly to the N nutrition of oilseed rape. Moreover, it may contribute indirectly since a better use efficiency for urea fertilizer, which was further increased by the application of a urease inhibitor, was observed in the lysimeter study.


Assuntos
Brassica napus/metabolismo , Nitrogênio/metabolismo , Solo/química , Transporte Biológico , Brassica napus/crescimento & desenvolvimento , Meio Ambiente , Fertilizantes/análise , Glutamato Desidrogenase/metabolismo , Hidroponia , Bombas de Íon/metabolismo , Nitratos/metabolismo , Isótopos de Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Compostos de Amônio Quaternário/metabolismo , Ureia/metabolismo
17.
Inorg Chem ; 51(9): 5342-52, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22524304

RESUMO

A series of linearly arranged donor-spacer-acceptor (D-S-A) systems 1-3, has been prepared and characterized. These dyads combine an Os(II)bis(terpyridine) unit as the photoactivable electron donor (D), a biphenylene (2) or phenylene-xylylene (3) fragment as the spacer (S), and a N-aryl-2,6-diphenylpyridinium electrophore (with aryl = 4-pyridyl or 4-pyridylium in 1 or 2/3, respectively) as the acceptor (A). Their absorption spectra, redox behavior, and luminescence properties (both at 77 K in rigid matrix and at 298 K in fluid solution) have been studied. The electronic structure and spectroscopic properties of a representative compound of the series (i.e., 2) have also been investigated at the theoretical level, performing Density Functional Theory (DFT)-based calculations. Time-dependent transient absorption spectra of 1-3 have also been recorded at room temperature. The results indicate that efficient photoinduced oxidative electron transfer takes place in the D-S-A systems at room temperature in fluid solution, for which rate constants (in the range 4 × 10(8)-2 × 10(10) s(-1)) depend on the driving force of the process and the spacer nature. In all the D-S-A systems, charge recombination is faster than photoinduced charge separation, in spite of the relatively large energy of the D(+)-S-A(-) charge-separated states (between 1.47 and 1.78 eV for the various species), which would suggest that the charge recombination occurs in the Marcus inverted region. Considerations based on superexchange mechanism suggest that the reason for the fast charge recombination is the presence of a virtual D-S(+)-A(-) state at low energy--because of the involvement of the easily oxidizable biphenylene spacer--which is beneficial for charge recombination via superexchange but unsuitable for photoinduced charge separation. To further support the above statement, we prepared a fourth D-S-A species, 4, analogous to 2 but with a (hardly oxidizable) single phenylene fragment serving as the spacer. For such a species, charge recombination (about 3 × 10(10) s(-1)) is slower than photoinduced charge separation (about 1 × 10(11) s(-1)), thereby confirming our suggestions.

18.
J Phys Chem A ; 116(30): 7880-91, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22724580

RESUMO

In regard to semirigid donor-spacer-acceptor (D-S-A) dyads devised for photoinduced charge separation and built from an unsaturated spacer, there exists a strategy of design referred to as "geometrical decoupling" that consists in introducing an inner-S twist angle approaching 90° to minimize adverse D/A mutual electronic influence. The present work aims at gaining further insights into the actual impact of the use of bulky substituents (R) of the alkyl type on the electronic structure of spacers (S) of the oligo-p-phenylene type, which can be critical in the functioning of derived dyads. To this end, a series of 12 novel expanded pyridiniums (EPs), regarded as model S-A assemblies, was synthesized and its structural, electronic, and photophysical properties were investigated at both experimental and theoretical levels. These EPs result from the combination of 4 types of pyridinium-based acceptor moieties with the three following types of S subunits connected at position 4 of the pyridinum core: xylyl (X), xylyl-phenyl (XP), and xylyl-tolyl (XT). From comparison of collected data with those already reported for eight other EPs based on the same A components but linked to S fragments of two other types (i.e., phenyl, P, and biphenyl, PP), the following quantitative order in regard to the pivotal S-centered HOMO energy perturbation was derived (sorted by increasing destabilization): P < X ≪ PP ≈< XP ≈< XT. This indicates that spacers (S) are primarily distinguished on the basis of their mono- or biaryl composition and secondarily by their number of methyl substituents (R). The electron-donating inductive contribution of methyl substituents (HOMO destabilization) more than counterbalances the effect of conjugation disruption (HOMO stabilization). This "compensation effect" suggests that mildly electron-withdrawing hindering groups are better suited for "geometrical decoupling", given that high-energy S-centered occupied MOs can assist charge recombination within D-S-A dyads.


Assuntos
Técnicas Eletroquímicas , Compostos de Piridínio/química , Cristalografia por Raios X , Elétrons , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos , Compostos de Piridínio/síntese química , Teoria Quântica
19.
Plants (Basel) ; 11(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35736757

RESUMO

Silicon (Si) is known to alleviate many nutritional stresses. However, in Brassica napus, which is a highly S-demanding species, the Si effect on S deficiency remains undocumented. The aim of this study was to assess whether Si alleviates the negative effects of S deficiency on Brassica napus and modulates root sulfate uptake capacity and S accumulation. For this, Brassica napus plants were cultivated with or without S and supplied or not supplied with Si. The effects of Si on S content, growth, expression of sulfate transporter genes (BnaSultr1.1; BnaSultr1.2) and sulfate transporters activity in roots were monitored. Si supply did not mitigate growth or S status alterations due to S deprivation but moderated the expression of BnaSultr1.1 in S-deprived plants without affecting the activity of root sulfate transporters. The effects of Si on the amount of S taken-up and on S transporter gene expression were also evaluated after 72 h of S resupply. In S-deprived plants, S re-feeding led to a strong decrease in the expression of both S transporter genes as expected, except in Si-treated plants where BnaSultr1.1 expression was maintained over time. This result is discussed in relation to the similar amount of S accumulated regardless of the Si treatment.

20.
J Am Chem Soc ; 133(20): 8005-13, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21513301

RESUMO

A step-by-step theoretical protocol based on density functional theory (DFT) and time-dependent DFT at both the molecular and periodic levels is proposed for the design of dye-sensitized solar cell (DSSC) devices including dyes and electrolyte additives. This computational tool is tested with a fused polycyclic pyridinium derivative as a novel dye prototype. First, the UV-vis spectrum of this dye alone is computed, and then the electronic structure of the system with the dye adsorbed on an oxide semiconductor surface is evaluated. The influence of the electrolyte part of the DSSC is investigated by explicitly taking into account the electrolyte molecules co-adsorbed with the dye on the surface. We find that tert-butylpyridine (TBP) reduces the electron injection by a factor of 2, while lithium ion increases this injection by a factor of 2.4. Our stepwise protocol is successfully validated by experimental measurements, which establish that TBP divides the electronic injection by 1.6 whereas Li(+) multiplies this injection by 1.8. This procedure should be useful for molecular engineering in the field of DSSCs, not only as a complement to experimental approaches but also for improving them in terms of time and resource consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA