Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neurosci ; 41(11): 2475-2495, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33472828

RESUMO

The dentate gyrus (DG) of the hippocampus is important for cognition and behavior. However, the circuits underlying these functions are unclear. DG mossy cells (MCs) are potentially important because of their excitatory synapses on the primary cell type, granule cells (GCs). However, MCs also activate GABAergic neurons, which inhibit GCs. We used viral delivery of designer receptors exclusively activated by designer drugs (DREADDs) in mice to implement a gain- and loss-of-function study of MCs in diverse behaviors. Using this approach, manipulations of MCs could bidirectionally regulate behavior. The results suggest that inhibiting MCs can reduce anxiety-like behavior and improve cognitive performance. However, not all cognitive or anxiety-related behaviors were influenced, suggesting specific roles of MCs in some, but not all, types of cognition and anxiety. Notably, several behaviors showed sex-specific effects, with females often showing more pronounced effects than the males. We also used the immediate early gene c-Fos to address whether DREADDs bidirectionally regulated MC or GC activity. We confirmed excitatory DREADDs increased MC c-Fos. However, there was no change in GC c-Fos, consistent with MC activation leading to GABAergic inhibition of GCs. In contrast, inhibitory DREADDs led to a large increase in GC c-Fos, consistent with a reduction in MC excitation of GABAergic neurons, and reduced inhibition of GCs. Together, these results suggest that MCs regulate anxiety and cognition in specific ways. We also raise the possibility that cognitive performance may be improved by reducing anxiety.SIGNIFICANCE STATEMENT The dentate gyrus (DG) has many important cognitive roles as well as being associated with affective behavior. This study addressed how a glutamatergic DG cell type called mossy cells (MCs) contributes to diverse behaviors, which is timely because it is known that MCs regulate the activity of the primary DG cell type, granule cells (GCs), but how MC activity influences behavior is unclear. We show, surprisingly, that activating MCs can lead to adverse behavioral outcomes, and inhibiting MCs have an opposite effect. Importantly, the results appeared to be task-dependent and showed that testing both sexes was important. Additional experiments indicated what MC and GC circuitry was involved. Together, the results suggest how MCs influence behaviors that involve the DG.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Cognição/fisiologia , Giro Denteado/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Animais , Feminino , Masculino , Camundongos
2.
Mol Cell Neurosci ; 99: 103395, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31422108

RESUMO

BACE1 is a transmembrane aspartic protease that cleaves various substrates and it is required for normal brain function. BACE1 expression is high during early development, but it is reduced in adulthood. Under conditions of stress and injury, BACE1 levels are increased; however, the underlying mechanisms that drive BACE1 elevation are not well understood. One mechanism associated with brain injury is the activation of injurious p75 neurotrophin receptor (p75), which can trigger pathological signals. Here we report that within 72 h after controlled cortical impact (CCI) or laser injury, BACE1 and p75 are increased and tightly co-expressed in cortical neurons of mouse brain. Additionally, BACE1 is not up-regulated in p75 null mice in response to focal cortical injury, while p75 over-expression results in BACE1 augmentation in HEK-293 and SY5Y cell lines. A luciferase assay conducted in SY5Y cell line revealed that BACE1 expression is regulated at the transcriptional level in response to p75 transfection. Interestingly, this effect does not appear to be dependent upon p75 ligands including mature and pro-neurotrophins. In addition, BACE1 activity on amyloid precursor protein (APP) is enhanced in SY5Y-APP cells transfected with a p75 construct. Lastly, we found that the activation of c-jun n-terminal kinase (JNK) by p75 contributes to BACE1 up-regulation. This study explores how two injury-induced molecules are intimately connected and suggests a potential link between p75 signaling and the expression of BACE1 after brain injury.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Receptor de Fator de Crescimento Neural/genética , Transdução de Sinais , Regulação para Cima
3.
Hippocampus ; 29(8): 683-709, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30672046

RESUMO

Previous studies suggest that reducing the numbers of adult-born neurons in the dentate gyrus (DG) of the mouse increases susceptibility to severe continuous seizures (status epilepticus; SE) evoked by systemic injection of the convulsant kainic acid (KA). However, it was not clear if the results would be the same for other ways to induce seizures, or if SE-induced damage would be affected. Therefore, we used pilocarpine, which induces seizures by a different mechanism than KA. Also, we quantified hippocampal damage after SE. In addition, we used both loss-of-function and gain-of-function methods in adult mice. We hypothesized that after loss-of-function, mice would be more susceptible to pilocarpine-induced SE and SE-associated hippocampal damage, and after gain-of-function, mice would be more protected from SE and hippocampal damage after SE. For loss-of-function, adult neurogenesis was suppressed by pharmacogenetic deletion of dividing radial glial precursors. For gain-of-function, adult neurogenesis was increased by conditional deletion of pro-apoptotic gene Bax in Nestin-expressing progenitors. Fluoro-Jade C (FJ-C) was used to quantify neuronal injury and video-electroencephalography (video-EEG) was used to quantify SE. Pilocarpine-induced SE was longer in mice with reduced adult neurogenesis, SE had more power and neuronal damage was greater. Conversely, mice with increased adult-born neurons had shorter SE, SE had less power, and there was less neuronal damage. The results suggest that adult-born neurons exert protective effects against SE and SE-induced neuronal injury.


Assuntos
Giro Denteado/fisiopatologia , Hipocampo/fisiopatologia , Neurogênese/fisiologia , Neuroproteção/fisiologia , Convulsões/fisiopatologia , Animais , Camundongos , Pilocarpina , Convulsões/induzido quimicamente
4.
NMR Biomed ; 27(8): 948-57, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24890981

RESUMO

The cuprizone mouse model is well established for studying the processes of both demyelination and remyelination in the corpus callosum, and it has been utilized together with diffusion tensor imaging (DTI) to investigate myelin and axonal pathology. Although some underlying morphological mechanisms contributing to the changes in diffusion tensor (DT) metrics have been identified, the understanding of specific associations between histology and diffusion measures remains limited. Diffusional kurtosis imaging (DKI) is an extension of DTI that provides metrics of diffusional non-Gaussianity, for which an associated white matter modeling (WMM) method has been developed. The main goal of the present study was to quantitatively assess the relationships between diffusion measures and histological measures in the mouse model of cuprizone-induced corpus callosum demyelination. The diffusional kurtosis (DK) and WMM metrics were found to provide additional information that enhances the sensitivity to detect the morphological heterogeneity in the chronic phase of the disease process in the rostral segment of the corpus callosum. Specifically, in the rostral segment, axonal water fraction (d = 2.6; p < 0.0001), radial kurtosis (d = 2.0; p = 0.001) and mean kurtosis (d = 1.5; p = 0.005) showed the most sensitivity between groups with respect to yielding statistically significant p values and high Cohen's d values. These results demonstrate the ability of DK and WMM metrics to detect white mater changes and inflammatory processes associated with cuprizone-induced demyelination. They also validate, in part, the application of these new WMM metrics for studying neurological diseases, as well as helping to elucidate their biophysical meaning.


Assuntos
Corpo Caloso/patologia , Doenças Desmielinizantes/patologia , Imagem de Tensor de Difusão , Substância Branca/patologia , Animais , Cuprizona , Doenças Desmielinizantes/induzido quimicamente , Difusão , Masculino , Camundongos Endogâmicos C57BL , Estatísticas não Paramétricas
5.
Epilepsy Behav ; 32: 121-31, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24534480

RESUMO

Spike-wave discharges (SWDs) are thalamocortical oscillations that are often considered to be the EEG correlate of absence seizures. Genetic absence epilepsy rats of Strasbourg (GAERS) and Wistar Albino Glaxo rats from Rijswijk (WAG/Rij) exhibit SWDs and are considered to be genetic animal models of absence epilepsy. However, it has been reported that other rat strains have SWDs, suggesting that SWDs may vary in their prevalence, but all rats have a predisposition for them. This is important because many of these rat strains are used to study temporal lobe epilepsy (TLE), where it is assumed that there is no seizure-like activity in controls. In the course of other studies using the Sprague-Dawley rat, a common rat strain for animal models of TLE, we found that approximately 19% of 2- to 3-month-old naive female Sprague-Dawley rats exhibited SWDs spontaneously during periods of behavioral arrest, which continued for months. Males exhibited SWDs only after 3 months of age, consistent with previous reports (Buzsáki et al., 1990). Housing in atypical lighting during early life appeared to facilitate the incidence of SWDs. Spike-wave discharges were often accompanied by behaviors similar to stage 1-2 limbic seizures. Therefore, additional analyses were made to address the similarity. We observed that the frequency of SWDs was similar to that of hippocampal theta rhythm during exploration for a given animal, typically 7-8 Hz. Therefore, activity in the frequency of theta rhythm that occurs during frozen behavior may not reflect seizures necessarily. Hippocampal recordings exhibited high frequency oscillations (>250 Hz) during SWDs, suggesting that neuronal activity in the hippocampus occurs during SWDs, i.e., it is not a passive structure. The data also suggest that high frequency oscillations, if rhythmic, may reflect SWDs. We also confirmed that SWDs were present in a common animal model of TLE, the pilocarpine model, using female Sprague-Dawley rats. Therefore, damage and associated changes to thalamic, hippocampal, and cortical neurons do not prevent SWDs, at least in this animal model. The results suggest that it is possible that SWDs occur in rodent models of TLE and that investigators mistakenly assume that they are stage 1-2 limbic seizures. We discuss the implications of the results and ways to avoid the potential problems associated with SWDs in animal models of TLE.


Assuntos
Eletroencefalografia/estatística & dados numéricos , Epilepsia Tipo Ausência/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Lobo Frontal/fisiopatologia , Neurônios/fisiologia , Animais , Modelos Animais de Doenças , Epilepsia Tipo Ausência/diagnóstico , Epilepsia Tipo Ausência/genética , Feminino , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Agonistas Muscarínicos/administração & dosagem , Neurônios/efeitos dos fármacos , Pilocarpina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Convulsões/fisiopatologia , Tálamo/patologia , Tálamo/fisiopatologia
6.
bioRxiv ; 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-37214805

RESUMO

Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice, and many other mouse models and AD patients, are generalized EEG spikes (interictal spikes; IIS). Hyperexcitability is also reflected by elevated expression of the transcription factor ΔFosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. We also studied the hilus of the DG because hilar neurons regulate GC excitability. We found reduced expression of the neuronal marker NeuN within hilar neurons in Tg2576 mice, which other studies have shown is a sign of oxidative stress or other pathology. Tg2576 breeding pairs received a diet with a relatively low, intermediate or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ΔFosB expression was reduced, and NeuN expression was restored. Spatial memory improved using the novel object location task. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB and spatial memory in an animal model of AD.

7.
Elife ; 122024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904658

RESUMO

Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.


Assuntos
Doença de Alzheimer , Colina , Suplementos Nutricionais , Modelos Animais de Doenças , Animais , Doença de Alzheimer/metabolismo , Colina/administração & dosagem , Colina/metabolismo , Camundongos , Feminino , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Masculino , Giro Denteado/metabolismo , Giro Denteado/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a DNA
8.
bioRxiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36711983

RESUMO

Temporal lobe epilepsy (TLE) is characterized by spontaneous recurrent seizures, abnormal activity between seizures, and impaired behavior. CA2 pyramidal neurons (PNs) are potentially important because inhibiting them with a chemogenetic approach reduces seizure frequency in a mouse model of TLE. However, whether seizures could be stopped by timing inhibition just as a seizure begins is unclear. Furthermore, whether inhibition would reduce the cortical and motor manifestations of seizures are not clear. Finally, whether interictal EEG abnormalities and TLE comorbidities would be improved are unknown. Therefore, real-time optogenetic silencing of CA2 PNs during seizures, interictal activity and behavior were studied in 2 mouse models of TLE. CA2 silencing significantly reduced seizure duration and time spent in convulsive behavior. Interictal spikes and high frequency oscillations were significantly reduced, and social behavior was improved. Therefore, brief focal silencing of CA2 PNs reduces seizures, their propagation, and convulsive manifestations, improves interictal EEG, and ameliorates social comorbidities. HIGHLIGHTS: Real-time CA2 silencing at the onset of seizures reduces seizure durationWhen CA2 silencing reduces seizure activity in hippocampus it also reduces cortical seizure activity and convulsive manifestations of seizuresInterictal spikes and high frequency oscillations are reduced by real-time CA2 silencingReal-time CA2 silencing of high frequency oscillations (>250Hz) rescues social memory deficits of chronic epileptic mice.

9.
bioRxiv ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37502909

RESUMO

Neurogenesis occurs in the adult brain in the hippocampal dentate gyrus, an area that contains neurons which are vulnerable to insults and injury, such as severe seizures. Previous studies showed that increasing adult neurogenesis reduced neuronal damage after these seizures. Because the damage typically is followed by chronic lifelong seizures (epilepsy), we asked if increasing adult neurogenesis would prevent epilepsy. Adult neurogenesis was selectively increased by deleting the pro-apoptotic gene Bax from Nestin-expressing progenitors. Tamoxifen was administered at 6 weeks of age to conditionally delete Bax in Nestin-CreERT2Baxfl/fl mice. Six weeks after tamoxifen administration, severe seizures (status epilepticus; SE) were induced by injection of the convulsant pilocarpine. Mice with increased adult neurogenesis exhibited fewer chronic seizures. Postictal depression was reduced also. These results were primarily female mice, possibly because they were the more affected by Bax deletion than males, consistent with sex differences in Bax in development. The female mice with enhanced adult neurogenesis also showed less neuronal loss of hilar mossy cells and hilar somatostatin-expressing neurons than wild type females or males, which is notable because these two cell types are implicated in epileptogenesis. The results suggest that increasing adult neurogenesis in the normal adult brain can reduce experimental epilepsy, and the effect shows a striking sex difference. The results are surprising in light of past studies showing that suppressing adult-born neurons can also reduce chronic seizures.

10.
Neuron ; 110(19): 3121-3138.e8, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35987207

RESUMO

The hippocampal CA2 region, an area important for social memory, has been suspected to play a role in temporal lobe epilepsy (TLE) because of its resistance to degeneration observed in neighboring CA1 and CA3 regions in both humans and rodent models of TLE. However, little is known about whether alterations in CA2 properties promote seizure generation or propagation. Here, we addressed the role of CA2 using the pilocarpine-induced status epilepticus model of TLE. Ex vivo electrophysiological recordings from acute hippocampal slices revealed a set of coordinated changes that enhance CA2 PC intrinsic excitability, reduce CA2 inhibitory input, and increase CA2 excitatory output to its major CA1 synaptic target. Moreover, selective chemogenetic silencing of CA2 pyramidal cells caused a significant decrease in the frequency of spontaneous seizures measured in vivo. These findings provide the first evidence that CA2 actively contributes to TLE seizure activity and may thus be a promising therapeutic target.


Assuntos
Epilepsia do Lobo Temporal , Animais , Região CA2 Hipocampal , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Hipocampo/fisiologia , Humanos , Camundongos , Pilocarpina/toxicidade , Células Piramidais/fisiologia , Convulsões/induzido quimicamente
11.
Cell Rep ; 29(9): 2875-2889.e6, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31775052

RESUMO

The sparse activity of hippocampal dentate gyrus (DG) granule cells (GCs) is thought to be critical for cognition and behavior, whereas excessive DG activity may contribute to disorders such as temporal lobe epilepsy (TLE). Glutamatergic mossy cells (MCs) of the DG are potentially critical to normal and pathological functions of the DG because they can regulate GC activity through innervation of GCs or indirectly through GABAergic neurons. Here, we test the hypothesis that MC excitation of GCs is normally weak, but under pathological conditions, MC excitation of GCs is dramatically strengthened. We show that selectively inhibiting MCs during severe seizures reduced manifestations of those seizures, hippocampal injury, and chronic epilepsy. In contrast, selectively activating MCs was pro-convulsant. Mechanistic in vitro studies using optogenetics further demonstrated the unanticipated ability of MC axons to excite GCs under pathological conditions. These results demonstrate an excitatory and epileptogenic effect of MCs in the DG.


Assuntos
Epilepsia/genética , Fibras Musgosas Hipocampais/metabolismo , Optogenética/métodos , Animais , Modelos Animais de Doenças , Epilepsia/patologia , Camundongos
12.
Neuron ; 38(4): 555-65, 2003 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-12765608

RESUMO

Tau aggregation is a common feature of neurodegenerative diseases such as Alzheimer's disease, and hyperphosphorylation of tau has been implicated as a fundamental pathogenic mechanism in this process. To examine the impact of cdk5 in tau aggregation and tangle formation, we crossed transgenic mice overexpressing the cdk5 activator p25, with transgenic mice overexpressing mutant (P301L) human tau. Tau was hyperphosphorylated at several sites in the double transgenics, and there was a highly significant accumulation of aggregated tau in brainstem and cortex. This was accompanied by increased numbers of silver-stained neurofibrillary tangles (NFTs). Insoluble tau was also associated with active GSK. Thus, cdk5 can initiate a major impact on tau pathology progression that probably involves several kinases. Kinase inhibitors may thus be beneficial therapeutically.


Assuntos
Tronco Encefálico/metabolismo , Córtex Cerebral/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Emaranhados Neurofibrilares/enzimologia , Proteínas tau/metabolismo , Animais , Tronco Encefálico/patologia , Córtex Cerebral/patologia , Quinase 5 Dependente de Ciclina , Quinases Ciclina-Dependentes/genética , Indução Enzimática/genética , Regulação Enzimológica da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas tau/genética
13.
Neuroreport ; 18(3): 293-6, 2007 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-17314674

RESUMO

Accumulation of amyloid beta in the brain is a pathological hallmark of Alzheimer's disease, and the reduction of amyloid beta has been proposed as a primary therapeutic target. Mice immunized against amyloid beta and mice infused with anti-amyloid beta antibody (active and passive immunization, respectively) have reduced brain amyloid beta levels, and two mechanisms have been proposed: microglial phagocytosis in the brain and enhancement of amyloid beta efflux by antibodies present in the periphery (sequestration). The optimal antibody for microglial phagocytosis has been shown to be N-terminal-specific antibody; however, the potency of C-terminal-specific antibody in sequestration remains unclear. In this study, we found that anti-amyloid beta 40-specific antibody induces amyloid beta sequestration. These results indicate that C-terminal antibodies may be useful in amyloid beta sequestration therapy.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/imunologia , Anticorpos/uso terapêutico , Imunoterapia/métodos , Placa Amiloide/imunologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/química , Animais , Anticorpos/farmacologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Quimiotaxia/imunologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microglia/imunologia , Fragmentos de Peptídeos/imunologia , Fagocitose/imunologia , Placa Amiloide/metabolismo , Estrutura Terciária de Proteína/fisiologia , Resultado do Tratamento
14.
Brain Struct Funct ; 222(7): 3147-3161, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28314928

RESUMO

The dentate gyrus (DG) principal cells are glutamatergic granule cells (GCs), and they are located in a compact cell layer. However, GCs are also present in the adjacent hilar region, but have been described in only a few studies. Therefore, we used the transcription factor prospero homeobox 1 (Prox1) to quantify GCs at postnatal day (PND) 16, 30, and 60 in a common mouse strain, C57BL/6J mice. At PND16, there was a large population of Prox1-immunoreactive (ir) hilar cells, with more in the septal than temporal hippocampus. At PND30 and 60, the size of the hilar Prox1-ir cell population was reduced. Similar numbers of hilar Prox1-expressing cells were observed in PND30 and 60 Swiss Webster mice. Prox1 is usually considered to be a marker of postmitotic GCs. However, many Prox1-ir hilar cells, especially at PND16, were not double-labeled with NeuN, a marker typically found in mature neurons. Most hilar Prox1-positive cells at PND16 co-expressed doublecortin (DCX) and calretinin, markers of immature GCs. Double-labeling with a marker of actively dividing cells, Ki67, was not detected. These results suggest that, surprisingly, a large population of cells in the hilus at PND16 are immature GCs (Type 2b and Type 3 cells). We also asked whether hilar Prox1-ir cell numbers are modifiable. To examine this issue, we conditionally deleted the proapoptotic gene BAX in Nestin-expressing cells at a time when there are numerous immature GCs in the hilus, PND2-8. When these mice were examined at PND60, the numbers of Prox1-ir hilar cells were significantly increased compared to control mice. However, deletion of BAX did not appear to change the proportion that co-expressed NeuN, suggesting that the size of the hilar Prox1-expressing population is modifiable. However, deleting BAX, a major developmental disruption, does not appear to change the proportion that ultimately becomes neurons.


Assuntos
Envelhecimento/fisiologia , Giro Denteado/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Nestina/metabolismo , Neurônios/metabolismo , Proteína X Associada a bcl-2/deficiência , Animais , Animais Recém-Nascidos , Calbindina 2/metabolismo , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Nestina/genética , Neurogênese/genética , Neuropeptídeos/metabolismo , Especificidade da Espécie , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
15.
Nat Med ; 23(11): 1377-1383, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29035369

RESUMO

The calcium-binding protein calbindin-D28k is critical for hippocampal function and cognition, but its expression is markedly decreased in various neurological disorders associated with epileptiform activity and seizures. In Alzheimer's disease (AD) and epilepsy, both of which are accompanied by recurrent seizures, the severity of cognitive deficits reflects the degree of calbindin reduction in the hippocampal dentate gyrus (DG). However, despite the importance of calbindin in both neuronal physiology and pathology, the regulatory mechanisms that control its expression in the hippocampus are poorly understood. Here we report an epigenetic mechanism through which seizures chronically suppress hippocampal calbindin expression and impair cognition. We demonstrate that ΔFosB, a highly stable transcription factor, is induced in the hippocampus in mouse models of AD and seizures, in which it binds and triggers histone deacetylation at the promoter of the calbindin gene (Calb1) and downregulates Calb1 transcription. Notably, increasing DG calbindin levels, either by direct virus-mediated expression or inhibition of ΔFosB signaling, improves spatial memory in a mouse model of AD. Moreover, levels of ΔFosB and calbindin expression are inversely related in the DG of individuals with temporal lobe epilepsy (TLE) or AD and correlate with performance on the Mini-Mental State Examination (MMSE). We propose that chronic suppression of calbindin by ΔFosB is one mechanism through which intermittent seizures drive persistent cognitive deficits in conditions accompanied by recurrent seizures.


Assuntos
Calbindina 1/metabolismo , Transtornos Cognitivos/etiologia , Epigênese Genética/fisiologia , Hipocampo/metabolismo , Proteínas Proto-Oncogênicas c-fos/fisiologia , Convulsões/complicações , Animais , Calbindina 1/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
16.
Sci Rep ; 6: 20119, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26818394

RESUMO

It has been suggested that neuronal hyperexcitability contributes to Alzheimer's disease (AD), so we asked how hyperexcitability develops in a common mouse model of ß-amyloid neuropathology - Tg2576 mice. Using video-EEG recordings, we found synchronized, large amplitude potentials resembling interictal spikes (IIS) in epilepsy at just 5 weeks of age, long before memory impairments or ß-amyloid deposition. Seizures were not detected, but they did occur later in life, suggesting that IIS are possibly the earliest stage of hyperexcitability. Interestingly, IIS primarily occurred during rapid-eye movement (REM) sleep, which is notable because REM is associated with increased cholinergic tone and cholinergic impairments are implicated in AD. Although previous studies suggest that cholinergic antagonists would worsen pathophysiology, the muscarinic antagonist atropine reduced IIS frequency. In addition, we found IIS occurred in APP51 mice which overexpress wild type (WT)-APP, although not as uniformly or as early in life as Tg2576 mice. Taken together with results from prior studies, the data suggest that surprising and multiple mechanisms contribute to hyperexcitability. The data also suggest that IIS may be a biomarker for early detection of AD.


Assuntos
Potenciais de Ação , Doença de Alzheimer/fisiopatologia , Ondas Encefálicas , Sono , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Comportamento Animal , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores Muscarínicos/metabolismo , Sono REM
17.
J Neurosci ; 23(13): 5645-9, 2003 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-12843267

RESUMO

Epidemiology, in vitro, and in vivo studies strongly implicate a role for cholesterol in the pathogenesis of Alzheimer's disease (AD). We have examined the impact of aberrant intracellular cholesterol transport on the processing of the amyloid precursor protein (APP) in a mouse model of Niemann-Pick type C (NPC) disease. In the NPC mouse brain, cholesterol accumulates in late endosomes/lysosomes. This was associated with the accumulation of beta-C-terminal fragments (CTFs) of APP, but the level of beta-secretase and its activity were not affected. Alpha-secretase activity and secreted APPalpha generation were also not affected, suggesting CTFs increased because of decreased clearance. The level of presenilin-1 (PS-1) was unchanged, but gamma-secretase activity was greatly enhanced, which correlated with an increase in Abeta40 and Abeta42 levels. These events were associated with abnormal distribution of PS-1 in the endosomal system. Our results show that aberrant cholesterol trafficking is associated with the potentiation of APP processing components in vivo, leading to an overall increase in Abeta levels.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Colesterol/metabolismo , Proteínas de Membrana/metabolismo , Doenças de Niemann-Pick/metabolismo , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apolipoproteínas E/metabolismo , Ácido Aspártico Endopeptidases , Transporte Biológico/fisiologia , Química Encefálica , Modelos Animais de Doenças , Endopeptidases/metabolismo , Endossomos/química , Endossomos/metabolismo , Gliose/patologia , Homozigoto , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Proteína C1 de Niemann-Pick , Doenças de Niemann-Pick/patologia , Presenilina-1 , Proteínas/metabolismo
18.
J Neurosci ; 23(1): 29-33, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12514198

RESUMO

Plaques containing beta-amyloid (Abeta) peptides are one of the pathological features of Alzheimer's disease, and the reduction of Abeta is considered a primary therapeutic target. Amyloid clearance by anti-Abeta antibodies has been reported after immunization, and recent data have shown that the antibodies may act as a peripheral sink for Abeta, thus altering the periphery/brain dynamics. Here we show that peripheral treatment with an agent that has high affinity for Abeta (gelsolin or GM1) but that is unrelated to an antibody or immune modulator reduced the level of Abeta in the brain, most likely because of a peripherally acting effect. We propose that in general, compounds that sequester plasma Abeta could reduce or prevent brain amyloidosis, which would enable the development of new therapeutic agents that are not limited by the need to penetrate the brain or evoke an immune response.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloidose/tratamento farmacológico , Gangliosídeo G(M1)/farmacologia , Gelsolina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/sangue , Precursor de Proteína beta-Amiloide/genética , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Encéfalo/metabolismo , Feminino , Gangliosídeo G(M1)/administração & dosagem , Gangliosídeo G(M1)/metabolismo , Gelsolina/administração & dosagem , Gelsolina/metabolismo , Injeções Intraperitoneais , Masculino , Proteínas de Membrana/genética , Camundongos , Mutação , Presenilina-1
19.
Curr Alzheimer Res ; 2(2): 265-8, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15974928

RESUMO

Amyloid beta (Abeta) has been considered as a primary cause of Alzheimer's disease (AD), and Abeta lowering approaches have been tested. Active immunization against Abeta is one of several promising Abeta-lowering approaches. Two mechanisms have been proposed: enhancement of microglial phagocytosis and Abeta sequestration (also called "peripheral sink"). We hypothesized that Abeta sequestration without immune modulation is sufficient to reduce the brain Abeta load and have demonstrated effective sequestration with Abeta binding agents that do not stimulate an immune reaction. Recent reports from other groups showed two other non-immune related Abeta binding agents, which have no structural relation to compounds we previously tested, reduced brain Abeta after peripheral administration. Congo red is a chemically synthesized small molecule that has binding affinity to Abeta. In the present study, we tested three Congo red derivatives in Abeta plaque-forming mice at an early pathological stage. Unfortunately, peripheral administration for three weeks did not substantially alter brain Abeta load. Optimized Abeta binding agents with high affinity to soluble Abeta are necessary for the sequestration approach.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Vermelho Congo/análogos & derivados , Vermelho Congo/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Presenilina-1 , Ligação Proteica/fisiologia
20.
Exp Neurol ; 269: 102-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25864929

RESUMO

In catamenial epilepsy, seizures exhibit a cyclic pattern that parallels the menstrual cycle. Many studies suggest that catamenial seizures are caused by fluctuations in gonadal hormones during the menstrual cycle, but this has been difficult to study in rodent models of epilepsy because the ovarian cycle in rodents, called the estrous cycle, is disrupted by severe seizures. Thus, when epilepsy is severe, estrous cycles become irregular or stop. Therefore, we modified kainic acid (KA)- and pilocarpine-induced status epilepticus (SE) models of epilepsy so that seizures were rare for the first months after SE, and conducted video-EEG during this time. The results showed that interictal spikes (IIS) occurred intermittently. All rats with regular 4-day estrous cycles had IIS that waxed and waned with the estrous cycle. The association between the estrous cycle and IIS was strong: if the estrous cycles became irregular transiently, IIS frequency also became irregular, and when the estrous cycle resumed its 4-day pattern, IIS frequency did also. Furthermore, when rats were ovariectomized, or males were recorded, IIS frequency did not show a 4-day pattern. Systemic administration of an estrogen receptor antagonist stopped the estrous cycle transiently, accompanied by transient irregularity of the IIS pattern. Eventually all animals developed severe, frequent seizures and at that time both the estrous cycle and the IIS became irregular. We conclude that the estrous cycle entrains IIS in the modified KA and pilocarpine SE models of epilepsy. The data suggest that the ovarian cycle influences more aspects of epilepsy than seizure susceptibility.


Assuntos
Ciclo Menstrual/efeitos dos fármacos , Pilocarpina/farmacologia , Estado Epiléptico/tratamento farmacológico , Animais , Modelos Animais de Doenças , Eletroencefalografia/métodos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Ácido Caínico/farmacologia , Masculino , Ratos Sprague-Dawley , Fatores Sexuais , Estado Epiléptico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA