Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Strength Cond Res ; 31(1): 45-53, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28005636

RESUMO

Mangine, GT, Hoffman, JR, Gonzalez, AM, Townsend, JR, Wells, AJ, Jajtner, AR, Beyer, KS, Boone, CH, Wang, R, Miramonti, AA, LaMonica, MB, Fukuda, DH, Witta, EL, Ratamess, NA, and Stout, JR. Exercise-induced hormone elevations are related to muscle growth. J Strength Cond Res 31(1): 45-53, 2017-Partial least squares regression structural equation modeling (PLS-SEM) was used to examine relationships between the endocrine response to resistance exercise and muscle hypertrophy in resistance-trained men. Pretesting (PRE) measures of muscle size (thickness and cross-sectional area) of the vastus lateralis and rectus femoris were collected in 26 resistance-trained men. Participants were randomly selected to complete a high-volume (VOL, n = 13, 10-12RM, 1-minute rest) or high-intensity (INT, n = 13, 3-5RM, 3-minute rest) resistance training program. Blood samples were collected at baseline, immediately postexercise, 30-minute, and 60-minute postexercise during weeks 1 (week 1) and 8 (week 8) of training. The hormonal responses (testosterone, growth hormone [22 kD], insulin-like growth factor-1, cortisol, and insulin) to each training session were evaluated using area-under-the-curve (AUC) analyses. Relationships between muscle size (PRE), AUC values (week 1 + week 8) for each hormone, and muscle size (POST) were assessed using a consistent PLS-SEM algorithm and tested for statistical significance (p ≤ 0.05) using a 1,000 samples consistent bootstrapping analysis. Group-wise comparisons for each relationship were assessed through independent t-tests. The model explained 73.4% (p < 0.001) of variance in muscle size at POST. Significant pathways between testosterone and muscle size at PRE (p = 0.043) and muscle size at POST (p = 0.032) were observed. The ability to explain muscle size at POST improved when the model was analyzed by group (INT: R = 0.882; VOL: R = 0.987; p < 0.001). No group differences in modal quality were found. Exercise-induced testosterone elevations, independent of the training programs used in this study, seem to be related to muscle growth.


Assuntos
Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Adulto , Atletas , Hormônio do Crescimento Humano/sangue , Humanos , Hidrocortisona/sangue , Fator de Crescimento Insulin-Like I/biossíntese , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Quadríceps/fisiologia , Descanso/fisiologia , Testosterona/sangue , Adulto Jovem
2.
Eur J Appl Physiol ; 116(11-12): 2367-2374, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27744584

RESUMO

PURPOSE: To compare the effects of two different resistance training programs, high intensity (INT) and high volume (VOL), on changes in isometric force (FRC), rate of force development (RFD), and barbell velocity during dynamic strength testing. METHODS: Twenty-nine resistance-trained men were randomly assigned to either the INT (n = 15, 3-5 RM, 3-min rest interval) or VOL (n = 14, 10-12 RM, 1-min rest interval) training group for 8 weeks. All participants completed a 2-week preparatory phase prior to randomization. Measures of barbell velocity, FRC, and RFD were performed before (PRE) and following (POST) the 8-week training program. Barbell velocity was determined during one-repetition maximum (1RM) testing of the squat (SQ) and bench press (BP) exercises. The isometric mid-thigh pull was used to assess FRC and RFD at specific time bands ranging from 0 to 30, 50, 90, 100, 150, 200, and 250 ms. RESULTS: Analysis of covariance revealed significant (p < 0.05) group differences in peak FRC, FRC at 30-200 ms, and RFD at 50-90 ms. Significant (p < 0.05) changes in INT but not VOL in peak FRC (INT: 9.2 ± 13.8 %; VOL: -4.3 ± 10.2 %), FRC at 30-200 ms (INT: 12.5-15.8 %; VOL: -1.0 to -4.3 %), and RFD at 50 ms (INT: 78.0 ± 163 %; VOL: -4.1 ± 49.6 %) were observed. A trend (p = 0.052) was observed for RFD at 90 ms (INT: 58.5 ± 115 %; VOL: -3.5 ± 40.1 %). No group differences were observed for the observed changes in barbell velocity. CONCLUSIONS: Results indicate that INT is more advantageous than VOL for improving FRC and RFD, while changes in barbell velocity during dynamic strength testing are similarly improved by both protocols in resistance-trained men.


Assuntos
Treinamento Intervalado de Alta Intensidade/métodos , Contração Isométrica/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Esforço Físico/fisiologia , Treinamento Resistido/métodos , Feminino , Humanos , Masculino , Aptidão Física/fisiologia , Adulto Jovem
3.
J Sports Sci Med ; 14(2): 322-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25983581

RESUMO

This study compared caffeine pharmacokinetics, glycerol concentrations, metabolic rate, and performance measures following ingestion of a time-release caffeine containing supplement (TR-CAF) versus a regular caffeine capsule (CAF) and a placebo (PL). Following a double-blind, placebo-controlled, randomized, cross-over design, ten males (25.9 ± 3.2 y) who regularly consume caffeine ingested capsules containing either TR-CAF, CAF, or PL. Blood draws and performance measures occurred at every hour over an 8-hour period. Plasma caffeine concentrations were significantly greater (p < 0.05) in CAF compared to TR-CAF during hours 2-5 and significantly greater (p = 0.042) in TR-CAF compared to CAF at hour 8. There were no significant differences between trials in glycerol concentrations (p = 0.86) or metabolic measures (p = 0.17-0.91). Physical reaction time was significantly improved for CAF at hour 5 (p=0.01) compared to PL. Average upper body reaction time was significantly improved for CAF and TR-CAF during hours 1-4 (p = 0.04 and p = 0.01, respectively) and over the 8-hour period (p = 0.04 and p = 0.001, respectively) compared to PL. Average upper body reaction time was also significantly improved for TR-CAF compared to PL during hours 5-8 (p = 0.004). TR-CAF and CAF showed distinct pharmacokinetics yielding modest effects on reaction time, yet did not alter glycerol concentration, metabolic measures, or other performance measures. Key pointsTime-release caffeine and regular caffeine showed distinct pharmacokinetics over an 8-hour period following ingestion.Time-release caffeine and regular caffeine yielded modest effects on reaction time over an 8-hour period following ingestion.Time-release caffeine and regular caffeine did not alter glycerol concentration, metabolic measures, or other performance measures over an 8-hour period following ingestion.

4.
J Sports Sci Med ; 13(4): 904-11, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25435784

RESUMO

Muscle architecture is a determinant for sprinting speed and jumping power, which may be related to anaerobic sports performance. In the present investigation, the relationships between peak (PVJP) and mean (MVJP) vertical jump power, 30m maximal sprinting speed (30M), and muscle architecture were examined in 28 college-aged, recreationally-active men (n = 14; 24.3 ± 2.2y; 89.1 ± 9.3kg; 1.80 ± 0.07 m) and women (n = 14; 21.5 ± 1.7y; 65.2 ± 12.4kg; 1.63 ± 0.08 m). Ultrasound measures of muscle thickness (MT), pennation angle (PNG), cross-sectional area (CSA), and echo intensity (ECHO) were collected from the rectus femoris (RF) and vastus lateralis (VL) of both legs; fascicle length (FL) was estimated from MT and PNG. Men possessed lower ECHO, greater muscle size (MT & CSA), were faster, and were more powerful (PVJP & MVJP) than women. Stepwise regression indicated that muscle size and quality influenced speed and power in men. In women, vastus lateralis asymmetry negatively affected PVJP (MT: r = -0.73; FL: r = -0.60) and MVJP (MT: r = -0.76; FL: r = -0.64), while asymmetrical ECHO (VL) and FL (RF) positively influenced MVJP (r = 0.55) and 30M (r = 0.57), respectively. Thigh muscle architecture appears to influence jumping power and sprinting speed, though the effect may vary by gender in recreationally-active adults. Appropriate assessment of these ultrasound variables in men and women prior to training may provide a more specific exercise prescription. Key pointsThe manner in which thigh muscle architecture affects jumping power and sprinting speed varies by gender.In men, performance is influenced by the magnitude of muscle size and architecture.In women, asymmetrical muscle size and architectural asymmetry significantly influence performance.To develop effective and precise exercise prescription for the improvement of jumping power and/or sprinting speed, muscle architecture assessment prior to the onset of a training program is advised.

5.
J Int Soc Sports Nutr ; 12: 37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26445565

RESUMO

BACKGROUND: The purpose of this study was to examine the ergogenic benefits of Turkish coffee consumed an hour before exercise. In addition, metabolic, cardiovascular, and subjective measures of energy, focus and alertness were examined in healthy, recreationally active adults who were regular caffeine consumers (>200 mg per day). METHODS: Twenty males (n = 10) and females (n = 10), age 24.1 ± 2.9 y; height 1.70 ± 0.09 m; body mass 73.0 ± 13.0 kg (mean ± SD), ingested both Turkish coffee [3 mg · kg(-1) BW of caffeine, (TC)], and decaffeinated Turkish coffee (DC) in a double-blind, randomized, cross-over design. Performance measures included a 5 km time trial, upper and lower body reaction to visual stimuli, and multiple object tracking. Plasma caffeine concentrations, blood pressure (BP), heart rate and subjective measures of energy, focus and alertness were assessed at baseline (BL), 30-min following coffee ingestion (30+), prior to endurance exercise (PRE) and immediately-post 5 km (IP). Metabolic measures [VO2, V E , and respiratory exchange rate (RER)] were measured during the 5 km. RESULTS: Plasma caffeine concentrations were significantly greater during TC (p < 0.001) at 30+, PRE, and IP compared to DC. Significantly higher energy levels were reported at 30+ and PRE for TC compared to DC. Upper body reaction performance (p = 0.023) and RER (p = 0.019) were significantly higher for TC (85.1 ± 11.6 "hits," and 0.98 ± 0.05 respectively) compared to DC (81.2 ± 13.7 "hits," and 0.96 ± 0.05, respectively). Although no significant differences (p = 0.192) were observed in 5 km run time, 12 of the 20 subjects ran faster (p = 0.012) during TC (1662 ± 252 s) compared to DC (1743 ± 296 s). Systolic BP was significantly elevated during TC in comparison to DC. No other differences (p > 0.05) were noted in any of the other performance or metabolic measures. CONCLUSIONS: Acute ingestion of TC resulted in a significant elevation in plasma caffeine concentrations within 30-min of consumption. TC ingestion resulted in significant performance benefits in reaction time and an increase in subjective feelings of energy in habitual caffeine users. No significant differences were noted in time for the 5 km between trials, however 60 % of the participants performed the 5 km faster during the TC trial and were deemed responders. When comparing TC to DC in responders only, significantly faster times were noted when consuming TC compared to DC. No significant benefits were noted in measures of cognitive function.


Assuntos
Desempenho Atlético , Café , Tempo de Reação/efeitos dos fármacos , Adulto , Glicemia/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Índice de Massa Corporal , Cafeína/administração & dosagem , Cafeína/sangue , Cognição/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Exercício Físico , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Ácido Láctico/sangue , Masculino , Substâncias para Melhoria do Desempenho/administração & dosagem , Substâncias para Melhoria do Desempenho/sangue , Adulto Jovem
6.
Physiol Rep ; 3(8)2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26272733

RESUMO

This investigation compared the effect of high-volume (VOL) versus high-intensity (INT) resistance training on stimulating changes in muscle size and strength in resistance-trained men. Following a 2-week preparatory phase, participants were randomly assigned to either a high-volume (VOL; n = 14, 4 × 10-12 repetitions with ~70% of one repetition maximum [1RM], 1-min rest intervals) or a high-intensity (INT; n = 15, 4 × 3-5 repetitions with ~90% of 1RM, 3-min rest intervals) training group for 8 weeks. Pre- and posttraining assessments included lean tissue mass via dual energy x-ray absorptiometry, muscle cross-sectional area and thickness of the vastus lateralis (VL), rectus femoris (RF), pectoralis major, and triceps brachii muscles via ultrasound images, and 1RM strength in the back squat and bench press (BP) exercises. Blood samples were collected at baseline, immediately post, 30 min post, and 60 min postexercise at week 3 (WK3) and week 10 (WK10) to assess the serum testosterone, growth hormone (GH), insulin-like growth factor-1 (IGF1), cortisol, and insulin concentrations. Compared to VOL, greater improvements (P < 0.05) in lean arm mass (5.2 ± 2.9% vs. 2.2 ± 5.6%) and 1RM BP (14.8 ± 9.7% vs. 6.9 ± 9.0%) were observed for INT. Compared to INT, area under the curve analysis revealed greater (P < 0.05) GH and cortisol responses for VOL at WK3 and cortisol only at WK10. Compared to WK3, the GH and cortisol responses were attenuated (P < 0.05) for VOL at WK10, while the IGF1 response was reduced (P < 0.05) for INT. It appears that high-intensity resistance training stimulates greater improvements in some measures of strength and hypertrophy in resistance-trained men during a short-term training period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA