Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JDS Commun ; 5(4): 272-277, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39220849

RESUMO

Quantification of potassium (K) excretion in dairy cattle is important to understand the environmental impact of dairy farming. To improve and monitor the environmental impact of dairy cows, there is a need for a simple, inexpensive, and less laborious method to quantify K excretion on dairy farms. The adoption of empirical mathematical models has been shown to be a promising tool to address this issue. Thus, the current study aimed to develop empirical predictive models for K excretion in dairy cattle from urine and feces that can help evaluate efficiency and monitor the environmental impact of milk production. To develop urine K (KUr, g/d) and fecal K (KFa, g/d) excretion prediction models, published literature that involved 45 and 54 treatment means from 10 and 14 studies, respectively, were used. Some studies reported either urinary or fecal K excretion or both, but in total, treatment means used to develop the models were from 17 studies. The linear mixed models were fitted with the fixed effect of K intake, DMI, dietary K content, urine volume, milk yield, and water intake, and the random effect of study weighted according to the number of observations. Leave-one-study out cross-validation was used to evaluate the performance of the proposed models and the best model was based on the lowest root mean square prediction error as a percentage of the observed mean values (RMSPE%) and highest concordance correlation coefficient (CCC). As expected, most daily K excretion was through urine (202.5 ± 92.1 g/d) than through feces (43.5 ± 21.0 g/d), and among the proposed models, the model including dietary K concentration showed poor predictive ability for both KUr and KFa with the lowest CCC values (-0.15 and -0.02, respectively) and systematic bias. The model developed using DMI to predict KFa excretion showed reasonable accuracy, as indicated by RMSPE, CCC, and R2 marginal of 46.6%, 0.42, and 48%, respectively. Among the proposed models for KUr and KFa, the model with K intake demonstrated better predictive performance, showing minimal systematic bias and random errors due to data variability of >92%. While these proposed models suggested that reducing K intake can lead to a decrease in K excretion, it is important to ensure that dairy cows receive adequate amounts of this nutrient to maintain optimal health and productivity, especially during periods of heat stress.

2.
JDS Commun ; 5(1): 18-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223390

RESUMO

Dairy cattle excreta are a valuable source of orthophosphate (Ortho-P), an inorganic form of phosphorus (P) that is readily available for microorganisms, plant growth, and development. There is, however, a growing environmental concern about the potential negative environmental impact of excessive amounts of Ortho-P excretion, which can lead to the eutrophication of water bodies. As a result, the development of mathematical equations to quantify and manage Ortho-P excretion on dairy farms could prove valuable for environmental sustainability. This study aimed to use literature data to develop empirical predictions for Ortho-P (g/kg dry matter [DM]) excretion using total P (TP [g/kg DM]) content of dairy cattle feces (Ortho-Pf) and manure (Ortho-Pm). Data sets from studies that evaluated and characterized the different forms of P in feces and manure from dairy cattle were compiled. After outlier exclusion, the final retained database for feces included 37 treatment means from 4 published papers while the manure comprised 23 treatment means from 7 published papers. A linear-mixed model was used to develop the predictive equations, incorporating the random effect of the study. A leave-one-out cross-validation procedure was used to evaluate the predictive ability of the developed models, whereby studies were regarded as folds. The fecal equation was determined as Ortho-Pf (g/kg DM) = -2.447 (0.572) + 0.966 (0.083) × TP (g/kg DM) (R2 = 0.79) and resulted in a root mean square prediction error as a percentage of mean observed value (RMSPE, %) of 32.8% and error due to random sources of 97.6%. Additionally, the manure equation was determined as Ortho-Pm (g/kg) = -0.204 (0.446) + 0.590 (0.065) × TP (g/kg) (R2 = 0.77) and had an RMSPE of 43.3% with a random error of 93.9%. Both models revealed minimal mean and slope biases on feces and manure data. Findings suggest that these sets of equations can be used to estimate excreted Ortho-P from total excreted P, helping nutritionists and farmers to understand the impact of dietary P changes on the environment. Further, these equations can be incorporated into extant models such as the Cornell Net Carbohydrate and Protein System (CNCPS) to aid in understanding and mitigating P and Ortho-P excretion from dairy cattle and to clarify the portion of P that migrates more rapidly into watersheds.

3.
Animals (Basel) ; 13(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37106954

RESUMO

Greenhouse gas emissions, such as enteric methane (CH4) from ruminant livestock, have been linked to global warming. Thus, easily applicable CH4 management strategies, including the inclusion of dietary additives, should be in place. The objectives of the current study were to: (i) compile a database of animal records that supplemented monensin and investigate the effect of monensin on CH4 emissions; (ii) identify the principal dietary, animal, and lactation performance input variables that predict enteric CH4 production (g/d) and yield (g/kg of dry matter intake DMI); (iii) develop empirical models that predict CH4 production and yield in dairy cattle; and (iv) evaluate the newly developed models and published models in the literature. A significant reduction in CH4 production and yield of 5.4% and 4.0%, respectively, was found with a monensin supplementation of ≤24 mg/kg DM. However, no robust models were developed from the monensin database because of inadequate observations under the current paper's inclusion/exclusion criteria. Thus, further long-term in vivo studies of monensin supplementation at ≤24 mg/kg DMI in dairy cattle on CH4 emissions specifically beyond 21 days of feeding are reported to ensure the monensin effects on the enteric CH4 are needed. In order to explore CH4 predictions independent of monensin, additional studies were added to the database. Subsequently, dairy cattle CH4 production prediction models were developed using a database generated from 18 in vivo studies, which included 61 treatment means from the combined data of lactating and non-lactating cows (COM) with a subset of 48 treatment means for lactating cows (LAC database). A leave-one-out cross-validation of the derived models showed that a DMI-only predictor model had a similar root mean square prediction error as a percentage of the mean observed value (RMSPE, %) on the COM and LAC database of 14.7 and 14.1%, respectively, and it was the key predictor of CH4 production. All databases observed an improvement in prediction abilities in CH4 production with DMI in the models along with dietary forage proportion inclusion and the quadratic term of dietary forage proportion. For the COM database, the CH4 yield was best predicted by the dietary forage proportion only, while the LAC database was for dietary forage proportion, milk fat, and protein yields. The best newly developed models showed improved predictions of CH4 emission compared to other published equations. Our results indicate that the inclusion of dietary composition along with DMI can provide an improved CH4 production prediction in dairy cattle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA