Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(13): 15547-15555, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585110

RESUMO

Hydrogen getters consisting of 1,4-bis[phenylethynyl] benzene (DEB) and a carbon-supported palladium catalyst (Pd/C) have been used to mitigate the accumulation of unwanted hydrogen gas in a sealed system. Here, we report the formulation of a composite resin consisting of silicone polymer plus DEB-Pd/C as an active getter material and the additive manufacturing of silicone getter composites with a high getter content (up to 50 wt %). NMR and DSC studies suggest no reaction between the silicone polymer resin and DEB even at elevated curing temperatures (75 °C). Getter composites with varying amounts of getter and filler were formulated, and their rheological properties were studied. The two composite resins with good printability parameters and different getter contents were chosen to make 3D-printed samples. The hydrogen absorption capacity of these samples was studied at a low hydrogen pressure of 750 mTorr of pure hydrogen. The getter composite with 50 wt% of getter showed normalized DEB conversion of 83%, with the hydrogen adsorption capacity of 100.2 mL of H2 per gram of polymer getter composite.

2.
Polymers (Basel) ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679315

RESUMO

With the rapid pace of advancements in additive manufacturing and techniques such as fused filament fabrication (FFF), the feedstocks used in these techniques should advance as well. While available filaments can be used to print highly customizable parts, the creation of the end part is often the only function of a given feedstock. In this study, novel FFF filaments with inherent environmental sensing functionalities were created by melt-blending poly(lactic acid) (PLA), poly(ethylene glycol) (PEG), and pH indicator powders (bromothymol blue, phenolphthalein, and thymol blue). The new PLA-PEG-indicator filaments were universally more crystalline than the PLA-only filaments (33-41% vs. 19% crystallinity), but changes in thermal stability and mechanical characteristics depended upon the indicator used; filaments containing bromothymol blue and thymol blue were more thermally stable, had higher tensile strength, and were less ductile than PLA-only filaments, while filaments containing phenolphthalein were less thermally stable, had lower tensile strength, and were more ductile. When the indicator-filled filaments were exposed to acidic, neutral, and basic solutions, all filaments functioned as effective pH sensors, though the bromothymol blue-containing filament was only successful as a base indicator. The biodegradability of the new filaments was evaluated by characterizing filament samples after aging in soil and soil slurry mixtures; the amount of physical deterioration and changes in filament crystallinity suggested that the bromothymol blue filament degraded faster than PLA-only filaments, while the phenolphthalein and thymol blue filaments saw decreases in degradation rates.

3.
Polymers (Basel) ; 15(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960014

RESUMO

Although fumed silica/siloxane suspensions are commonly employed in additive manufacturing technology, the interplay between shelf life, storage conditions, and printability has yet to be explored. In this work, direct ink writing (DIW) was used to print unique three-dimensional structures that required suspensions to retain shape and form while being printed onto a substrate. Suspensions containing varying concentrations of hydrophobic and hydrophilic silica were formulated and evaluated over a time span of thirty days. Storage conditions included low (8%) and high (50%) relative humidity and temperatures ranging from 4 °C to 25 °C. The shelf life of the suspensions was examined by comparing the print quality of pristine and aged samples via rheology, optical microscopy, and mechanical testing. Results showed a significant decrease in printability over time for suspensions containing hydrophilic fumed silica, whereas the printability of suspensions containing hydrophobic fumed silica remained largely unchanged after storage. The findings in this work established the following recommendations for extending the shelf life and printability of suspensions commonly used in DIW technology: (1) higher fumed silica concentrations, (2) low humidity and low temperature storage environments, and (3) the use of hydrophobic fumed silica instead of hydrophilic fumed silica.

4.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365651

RESUMO

Although direct ink writing (DIW) allows the rapid fabrication of unique 3D printed objects, the resins-or "inks"-available for this technique are in short supply and often offer little functionality, leading to the development of new, custom inks. However, when creating new inks, the ability of the ink to lead to a successful print, or the "printability," must be considered. Thus, this work examined the effect of filler composition/concentration, printing parameters, and lattice structure on the printability of new polysiloxane inks incorporating high concentrations (50-70 wt%) of metallic and ceramic fillers as well as emulsions. Results suggest that strut diameter and spacing ratio have the most influence on the printability of DIW materials and that the printability of silica- and metal-filled inks is more predictable than ceramic-filled inks. Additionally, higher filler loadings and SC geometries led to stiffer printed parts than lower loadings and FCT geometries, and metal-filled inks were more thermally stable than ceramic-filled inks. The findings in this work provide important insights into the tradeoffs associated with the development of unique and/or multifunctional DIW inks, printability, and the final material's performance.

5.
Polymers (Basel) ; 13(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641099

RESUMO

Additive manufacturing, with its rapid advances in materials science, allows for researchers and companies to have the ability to create novel formulations and final parts that would have been difficult or near impossible to fabricate with traditional manufacturing methods. One such 3D printing technology, direct ink writing, is especially advantageous in fields requiring customizable parts with high amounts of functional fillers. Nuclear technology is a prime example of a field that necessitates new material design with regard to unique parts that also provide radiation shielding. Indeed, much effort has been focused on developing new rigid radiation shielding components, but DIW remains a less explored technology with a lot of potential for nuclear applications. In this study, DIW formulations that can behave as radiation shields were developed and were printed with varying amounts of porosity to tune the thermomechanical performance.

6.
Polymers (Basel) ; 13(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918388

RESUMO

In order to meet the needs of constantly advancing technologies, fabricating materials with improved properties and predictable behavior has become vital. To that end, we have prepared polydimethylsiloxane (PDMS) polymer samples filled with carbon nanofibers (CFs) at 0, 0.5, 1.0, 2.0, and 4.0 CF loadings (w/w) to investigate and optimize the amount of filler needed for fabrication with improved mechanical properties. Samples were prepared using easy, cost-efficient mechanical mixing to combine the PDMS and CF filler and were then characterized by chemical (FTIR), mechanical (hardness and tension), and physical (swelling, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and coefficient of thermal expansion) analyses to determine the material properties. We found that hardness and thermal stability increased predictably, while the ultimate strength and toughness both decreased. Repeated tension caused the CF-filled PDMS samples to lose significant toughness with increasing CF loadings. The hardness and thermal degradation temperature with 4 wt.% CF loading in PDMS increased more than 40% and 25 °C, respectively, compared with the pristine PDMS sample. Additionally, dilatometer measurements showed a 20% decrease in the coefficient of thermal expansion (CTE) with a small amount of CF filler in PDMS. In this study, we were able to show the mechanical and thermal properties of PDMS can be tuned with good confidence using CFs.

7.
Polymers (Basel) ; 13(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671918

RESUMO

In addition to possessing the desirable properties of being a biodegradable and biocompatible polymer fabricated from renewable resources, poly (lactic acid) (PLA) has useful mechanical and thermal attributes that has enabled it to be one of the most widely-used plastics for medicine, manufacturing, and agriculture. Yet, PLA composites have not been heavily explored for use in 3D-printing applications, and the range of feasible materials for the technology is limited, which inhibits its potential growth and industry adoption. In this study, tunable, multifunctional antimicrobial PLA composite filaments for 3D-printing have been fabricated and tested via chemical, thermal, mechanical, and antimicrobial experiments. Thermally stable antimicrobial ceramics, ZnO and TiO2, were used as fillers up to 30 wt%, and poly (ethylene glycol) (PEG) was used as a plasticizer to tune the physical material properties. Results demonstrate that the PLA composite filaments exhibit the thermal phase behaviors and thermal stability suitable for 3D-printing. Additionally, PEG can be used to tune the mechanical properties while not affecting the antimicrobial efficacy that ZnO and TiO2 imbue.

8.
Polymers (Basel) ; 13(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34578026

RESUMO

Primarily used as an encapsulant and soft adhesive, Sylgard 184 is an engineered, high-performance silicone polymer that has applications spanning microfluidics, microelectromechanical systems, mechanobiology, and protecting electronic and non-electronic devices and equipment. Despite its ubiquity, there are improvements to be considered, namely, decreasing its gel point at room temperature, understanding volatile gas products upon aging, and determining how material properties change over its lifespan. In this work, these aspects were investigated by incorporating well-defined compounds (the Ashby-Karstedt catalyst and tetrakis (dimethylsiloxy) silane) into Sylgard 184 to make modified formulations. As a result of these additions, the curing time at room temperature was accelerated, which allowed for Sylgard 184 to be useful within a much shorter time frame. Additionally, long-term thermal accelerated aging was performed on Sylgard 184 and its modifications in order to create predictive lifetime models for its volatile gas generation and material properties.

9.
ACS Macro Lett ; 1(12): 1403-1407, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-35607114

RESUMO

The morphology of Nafion (EW = 1000, Na+ form) in dilute solvents is investigated using small angle neutron scattering (SANS) and 19F NMR. SANS modeling indicates three types of particle morphology: (i) a well-defined cylindrical dispersion in glycerol and in ethylene glycol with different degrees of solvent penetration; (ii) a less-defined, highly solvated large particle (>200 nm) in water/isopropanol mixtures; and (iii) a random-coil conformation (true solution behavior) in N-methylpyrrolidone. These distinct morphological characteristics of Nafion are consistent with the main and side chain mobilities measured by 19F NMR.

11.
J Am Chem Soc ; 124(17): 4580-2, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11971703

RESUMO

Reactions between the Os(VI)-nitrido complexes, [OsVI(L2)(Cl)3(N)] (L2 = 2,2'-bipyridine (bpy) ([1]), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), 1,10-phenanthroline (phen), and 4,7-diphenyl-1,10-phenanthroline (Ph2phen)), and bis-(triphenylphosphoranylidene)ammonium azide (PPNN3) in dry CH3CN at 60 degrees C under N2 give the corresponding Os(IV)-azidoimido complexes, [OsIV(L2)(Cl)3(NN3)]- (L2 = bpy = [2]-, L2 = Me2bpy = [3]-, L2 = phen = [4]-, and L2 = Ph2phen = [5]-) as their PPN+ salts. The formulation of the N42- ligand has been substantiated by 15N-labeling, IR, and 15N NMR measurements. Hydroxylation of [2]- at Nalpha with O<--NMe3.3H2O occurs to give the Os(IV)-azidohydroxoamido complex, [OsIV(bpy)(Cl)3(N(OH)N3)] ([6]), which, when deprotonated, undergoes dinitrogen elimination to give the Os(II)-dinitrogen oxide complex, [OsII(bpy)(Cl)3(N2O)]- ([7]-). They are the first well-characterized examples of each kind of complex for Os.

12.
J Am Chem Soc ; 125(10): 2828-9, 2003 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-12617621

RESUMO

Reaction between the Os(VI)-nitrido complex, trans-[OsVI(tpy)(Cl)2(N)]PF6 (tpy = 2,2':6',2' '-terpyridine), and ammonia (NH3) under N2 in dry CH3CN gives the mu-1,3-azido bridged [OsII-N3-OsII]- dimer, trans,trans-NH4[(tpy)(Cl)2OsII(N3)OsII(Cl)2(tpy)]. It undergoes air oxidation to give the [OsIII-N3-OsIII]+ analogue, trans,trans-[(tpy)(Cl)2OsIII(N3)OsIII(Cl)2(tpy)]PF6 ([OsIII-N3-OsIII]PF6), which has been isolated and characterized. The structural formulation as a mu-1,3-N3 bridged complex has been established by infrared and 15N NMR measurements on the 15N-labeled forms, [OsIII-14N=15N=14N-OsIII]+, [OsIII-15N=14N=15N-OsIII]+, and [OsIII-15N=15N=15N-OsIII]+. Cyclic voltammetric measurements in 0.2 M Bu4NPF6/CH3CN reveal the existence of five chemically reversible waves from 1.40 to -0.12 V for couples ranging from OsV-OsIV/OsIV-OsIV to OsIII-OsII/OsII-OsII. DeltaE1/2 values for couples adjacent to the three mixed-valence forms are 0.19 V for OsIII-OsII, 0.52 V for OsIV-OsIII, and >0.71 V for OsV-OsIV. In CH3CN at 60 degrees C, [OsIII-N3-OsIII]+ undergoes a [2 + 3] cycloaddition with CH3CN at the mu-N3- bridge followed by a solvolysis to give trans-[OsIII(tpy)(Cl)2(5-MeCN4)] and trans-[OsIII(tpy)(Cl)2(NCCH3)]PF6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA