Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Rev Biol Trop ; 64(1): 33-44, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-28861990

RESUMO

Ecologists have been largely interested in the description and understanding of the power scaling relationships between body size and abundance of organisms. Many studies have focused on estimating the exponents of these functions across taxonomic groups and spatial scales, to draw inferences about the processes underlying this pattern. The exponents of these functions usually approximate -3/4 at geographical scales, but they deviate from this value when smaller spatial extensions are considered. This has led to propose that body size-abundance relationships at small spatial scales may reflect the impact of environmental changes. This study tests this hypothesis by examining body size spectra of benthic shrimps (Decapoda: Caridea) and snails (Gastropoda) in the Tamiahua lagoon, a brackish body water located in the Eastern coast of Mexico. We mea- sured water quality parameters (dissolved oxygen, salinity, pH, water temperature, sediment organic matter and chemical oxygen demand) and sampled benthic macrofauna during three different climatic conditions of the year (cold, dry and rainy season). Given the small size of most individuals in the benthic macrofaunal samples, we used body volume, instead of weight, to estimate their body size. Body size-abundance relationships of both taxonomic groups were described by tabulating data from each season into base-2 logarithmic body size bins. In both taxonomic groups, observed frequencies per body size class in each season were standardized to yield densities (i.e., individuals/m(3)). Nonlinear regression analyses were separately performed for each taxonomic group at each season to assess whether body size spectra followed power scaling functions. Additionally, for each taxonomic group, multiple regression analyses were used to determine whether these relationships varied among seasons. Our results indicated that, while body size-abundance relationships in both taxonomic groups followed power functions, the parameters defining the shape of these relationships varied among seasons. These variations in the parameters of the body size-abundance relationships seems to be related to changes in the abundance of individuals within the different body size classes, which seems to follow the seasonal changes that occur in the environmental conditions of the lagoon. Thus, we propose that these body size-abundance relation- ships are influenced by the frequency and intensity of environmental changes affecting this ecosystem.


Assuntos
Tamanho Corporal , Palaemonidae/anatomia & histologia , Palaemonidae/classificação , Caramujos/anatomia & histologia , Caramujos/classificação , Qualidade da Água , Animais , México , Estações do Ano
2.
Ecol Evol ; 14(3): e11156, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38510542

RESUMO

The latitudinal diversity gradient (LDG) hypothesis has been validated for many taxon groups, but so far, stream diatoms have not conformed to this pattern. Research on diatoms that includes data from South America is lacking, and our study aims to address this knowledge gap. Previous studies have successfully explained stream diatom species richness by considering niche dimensionality of physicochemical variables. Moreover, in southwestern South America, the observed biogeographical pattern differs from LDG and has been shown to be determined by historical factors. We used a dataset comprising 373 records of stream diatom communities located between 35° S and 52° S latitude, southwestern South America. The dataset included physicochemical river water variables, climate data, and ice sheet cover from the Last Glacial Maximum. We explored geographical patterns of diatom species richness and evaluated 12 different causal mechanisms, including climate-related theories, physicochemical and climatical exploratory analyses, historical factors, and niche dimensionality. A metacommunity analysis was conducted to evaluate the possible nested structure due to historical factors. We observed an increase in diatom species richness from south to north. Models containing both physicochemical and climatic predictors explained the highest proportion of variation in the data. Silica, which was correlated with latitude, and flow velocity, which did not show any spatial pattern, were the most important predictors. Historical factors and nested structure did not play any role. Contrary to what has been reported in the literature, we found no support for climate-related explanations of species richness. Instead, theories related to niche dimensionality and local factors provided better explanations, consistent with previous related research. We suggest that the increase in diatom richness in the north of our study region is due to a higher nutrient supply in these rivers, rather than a due to larger species pool in the area.

3.
Chemosphere ; 288(Pt 1): 132410, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34600016

RESUMO

Widespread intertidal mussels are exposed to a variety of natural and anthropogenic stressors. Even so, our understanding of the combined influence of stressors such as predation risk and ocean acidification (OA) on these species remains limited. This study examined the response of the purple mussel (Perumytilus purpuratus), a species distributed along Pacific southeastern rocky shores, to the effects of predation risk and OA. Using a laboratory 2 × 2 cross design, purple mussels were either devoid or exposed to predator cues from the muricid snail Acanthina monodon, while simultaneously exposing them to current (500 ppm) or projected OA conditions (1500 ppm). The response of purple mussels to these factors was assessed using growth, calcification, clearance, and metabolic rates, in addition to byssus production. After 60 d, the presence of predator cues reduced mussel growth in width and length, and in the latter case, OA enhanced this response making the effects of predator cues more severe. Calcification rates were driven by the interaction between the two stressors, whereas clearance rates increased only in response to OA, likely explaining some of the growth results. Mussel byssus production also increased with pCO2 but interacted with predation risk: in the absence of predator cues, byssus production increased with OA. These results suggest that projected levels of OA may alter and in some cases prevail over the natural response of purple mussels to predation risk. Considering the role played by this mussel as a dominant competitor and ecosystem engineer in rocky shores, these results have community-wide implications.


Assuntos
Bivalves , Ecossistema , Animais , Efeitos Antropogênicos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Comportamento Predatório , Água do Mar , Caramujos
4.
Mar Pollut Bull ; 184: 114149, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162293

RESUMO

We assess the role of direct and indirect effects of coastal environmental drivers (including the parameters of the carbonate system) on energy expenditure (MR) and body mass (M) of the intertidal mussel, Perumytilus purpuratus, across 10 populations distributed over 2800 km along the Southern Eastern Pacific (SEP) coast. We find biogeographic and local variation in carbonate system variables mediates the effects of latitude and temperature on metabolic rate allometry along the SEP coast. Also, the fitted Piecewise Structural Equation models (PSEM) have greater predictive ability (conditional R2 = 0.95) relative to the allometric scaling model (R2 = 0.35). The largest standardized coefficients for MR and M were determined by the influence of temperature and latitude, followed by pCO2, pH, total alkalinity, and salinity. Thus, physiological diversity of P. purpuratus along the SEP coast emerges as the result of direct and indirect effects of biogeographic and local environmental variables.


Assuntos
Carbonatos , Mytilidae , Animais , Temperatura , Salinidade
5.
PeerJ ; 9: e12010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692242

RESUMO

Latitudinal diversity gradients (LDG) and their explanatory factors are among the most challenging topics in macroecology and biogeography. Despite of its apparent generality, a growing body of evidence shows that 'anomalous' LDG (i.e., inverse or hump-shaped trends) are common among marine organisms along the Southeastern Pacific (SEP) coast. Here, we evaluate the shape of the LDG of marine benthic polychaetes and its underlying causes using a dataset of 643 species inhabiting the continental shelf (<200 m depth), using latitudinal bands with a spatial resolution of 0.5°, along the SEP (3-56° S). The explanatory value of six oceanographic (Sea Surface Temperature (SST), SST range, salinity, salinity range, primary productivity and shelf area), and one macroecological proxy (median latitudinal range of species) were assessed using a random forest model. The taxonomic structure was used to estimate the degree of niche conservatism of predictor variables and to estimate latitudinal trends in phylogenetic diversity, based on three indices (phylogenetic richness (PDSES), mean pairwise distance (MPDSES), and variation of pairwise distances (VPD)). The LDG exhibits a hump-shaped trend, with a maximum peak of species richness at ca. 42° S, declining towards northern and southern areas of SEP. The latitudinal pattern was also evident in local samples controlled by sampling effort. The random forest model had a high accuracy (pseudo-r2 = 0.95) and showed that the LDG could be explained by four variables (median latitudinal range, SST, salinity, and SST range), yet the functional relationship between species richness and these predictors was variable. A significant degree of phylogenetic conservatism was detected for the median latitudinal range and SST. PDSES increased toward the southern region, whereas VPD showed the opposite trend, both statistically significant. MPDSES has the same trend as PDSES, but it is not significant. Our results reinforce the idea that the south Chile fjord area, particularly the Chiloé region, was likely the evolutionary source of new species of marine polychaetes along SEP, creating a hotspot of diversity. Therefore, in the same way as the canonical LDG shows a decline in diversity while moving away from the tropics; on this case the decline occurs while moving away from Chiloé Island. These results, coupled with a strong phylogenetic signal of the main predictor variables suggest that processes operating mainly at evolutionary timescales govern the LDG.

6.
Proc Natl Acad Sci U S A ; 104(26): 10900-3, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17578913

RESUMO

Complex ecological and economic systems show fluctuations in macroscopic quantities such as exchange rates, size of companies or populations that follow non-Gaussian tent-shaped probability distributions of growth rates with power-law decay, which suggests that fluctuations in complex systems may be governed by universal mechanisms, independent of particular details and idiosyncrasies. We propose here that metabolic rate within individual organisms may be considered as an example of an emergent property of a complex system and test the hypothesis that the probability distribution of fluctuations in the metabolic rate of individuals has a "universal" form regardless of body size or taxonomic affiliation. We examined data from 71 individuals belonging to 25 vertebrate species (birds, mammals, and lizards). We report three main results. First, for all these individuals and species, the distribution of metabolic rate fluctuations follows a tent-shaped distribution with power-law decay. Second, the standard deviation of metabolic rate fluctuations decays as a power-law function of both average metabolic rate and body mass, with exponents -0.352 and -1/4 respectively. Finally, we find that the distributions of metabolic rate fluctuations for different organisms can all be rescaled to a single parent distribution, supporting the existence of general principles underlying the structure and functioning of individual organisms.


Assuntos
Metabolismo , Modelos Biológicos , Distribuições Estatísticas , Animais , Tamanho Corporal , Cinética , Probabilidade , Vertebrados
7.
PeerJ ; 7: e7771, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824752

RESUMO

Despite its theoretical relationship, the effect of body size on the performance of species distribution models (SDM) has only been assessed in a few studies, and to date, the evidence shows unclear results. In this context, Chilean fishes provide an ideal case to evaluate this relationship due to their short size (fishes between 5 cm and 40 cm) and conservation status, providing evidence for species at the lower end of the worldwide fish size distribution and representing a relevant management tool for species conservation. We assessed the effect of body size on the performance of SDM in nine Chilean river fishes, considering the number of records, performance metrics, and predictor importance. The study was developed in the Bueno and Valdivia basins of southern Chile. We used a neural network modeling algorithm, training models with a cross-validation scheme. The effect of fish size on selected metrics was assessed using linear models and beta regressions. While no relationship between fish size and the number of presences was found, our results indicate that the model specificity increases with fish size. Additionally, the predictive importance of Riparian Vegetation and Within-Channel Structures variables decreases for larger species. Our results suggest that the relationship between the grain of the dataset and the home range of the species could bias SDM, leading in our case, to overprediction of absences. We also suggest that evolutionary adaptation to low slopes among Chilean fishes increases the relevance of riparian vegetation in the SDMs of smaller species. This study provides evidence on how species size may bias SDM, which could potentially be corrected by adjusting the model grain.

8.
Ambio ; 48(3): 304-312, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29971664

RESUMO

In mid-2004, anthropogenically induced changes in water quality of the Río Cruces wetland, a Ramsar site located in southern Chile (ca. 40°S), enhanced the resuspension of iron-enriched sediments, which were subsequently deposited over the most abundant aquatic macrophyte of the wetland (Egeria densa Planch. 1849). This event triggered the formation of brownish, necrotic patches and increased iron contents in the leaves and stems of E. densa, which contributed to a significant demise of the plant within the wetland. In this study, we estimate the recovery time as a proxy for resilience of this macrophyte at organismal and population levels. Macro- and micro-optical characteristics, as well as iron contents in tissues of E. densa, were documented in four time windows (2004, 2008, 2012, and 2014). In addition, the size of the macrophyte population and its spatial occurrence were monitored from 2008 to 2016 across 36 study sites within the wetland. Our results suggest necrotic patches and high iron contents in E. densa persisted at least until 2008. After 2013, a significant increase in the spatial occurrence of E. densa was observed within the wetland, reaching full recovery of the population during 2015. The health of plant tissues and iron contents in leaves and stems showed recovery period close to 4 years, while the recovery of the spatial occurrence of E. densa took approximately 9 years. While the monitoring of plant health was not performed on a strict annual basis, the recovery rates estimated here are slower than those described for other macrophytes. This finding might reflect the long-lasting effects of the disturbance from 2004 and the interaction with biotic processes, such as foraging by waterbirds recolonizing the Río Cruces wetland. These results show that full recovery of E. densa was achieved through a cascade of effects starting with abiotic factors (water quality) and passing through physiological and individual levels, to finally reach the population level. A key aspect of this response is the invasive nature of the macrophyte, which likely contributed to its recovery as a consequence of improved water quality. Less successful macrophyte species in other systems may not reach the specific population recovery, and become subdominant species instead, or even be eradicated from the wetland either as the result of herbivory or due to competition with other macrophytes.


Assuntos
Hydrocharitaceae , Áreas Alagadas , Chile , Herbivoria , Humanos , Qualidade da Água
9.
Sci Total Environ ; 628-629: 291-301, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448019

RESUMO

In 2004 migration and mortality for unknown reasons of the herbivorous Black necked swan (Cygnus melancorhyphus (Molina, 1782)) occurred within the Río Cruces wetland (southern Chile), a Ramsar Site and nature sanctuary. Before 2004, this wetland hosted the largest breeding population of this water bird in the Neotropic Realm. The concurrent decrease in the spatial occurrence of the aquatic plant Egeria densa Planch. 1849 - the main food source of swans - was proposed as a cause for swan migration and mortality. Additionally, post-mortem analyses carried out on swans during 2004 showed diminished body weight, high iron loads and histopathological abnormalities in their livers, suggesting iron storage disease. Various hypotheses were postulated to describe those changes; the most plausible related to variations in water quality after a pulp mill located upstream the wetland started to operate in February 2004. Those changes cascaded throughout the stands of E. densa whose remnants had high iron contents in their tissues. Here we present results of a long-term monitoring program of the wetland components, which show that swan population abundance, body weights and histological liver conditions recovered to pre-disturbance levels in 2012. The recovery of E. densa and iron content in plants throughout the wetland, also returned to pre-disturbance levels in the same 8-year time period. These results show the temporal scale over which resilience and natural restoring processes occur in wetland ecosystems of temperate regions such as southern Chile.


Assuntos
Aves , Conservação dos Recursos Naturais , Áreas Alagadas , Animais , Chile , Ecossistema , Monitoramento Ambiental , Qualidade da Água
11.
PeerJ ; 4: e2607, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27781179

RESUMO

Complex physiological dynamics have been argued to be a signature of healthy physiological function. Here we test whether the complexity of metabolic rate fluctuations in small endotherms decreases with lower environmental temperatures. To do so, we examine the multifractal temporal scaling properties of the rate of change in oxygen consumption r(VO2), in the laboratory mouse Mus musculus, assessing their long range correlation properties across seven different environmental temperatures, ranging from 0 °C to 30 °C. To do so, we applied multifractal detrended fluctuation analysis (MF-DFA), finding that r(VO2) fluctuations show two scaling regimes. For small time scales below the crossover time (approximately 102 s), either monofractal or weak multifractal dynamics are observed depending on whether Ta < 15 °C or Ta > 15 °C respectively. For larger time scales, r(VO2) fluctuations are characterized by an asymptotic scaling exponent that indicates multifractal anti-persistent or uncorrelated dynamics. For both scaling regimes, a generalization of the multiplicative cascade model provides very good fits for the Renyi exponents τ(q), showing that the infinite number of exponents h(q) can be described by only two independent parameters, a and b. We also show that the long-range correlation structure of r(VO2) time series differs from randomly shuffled series, and may not be explained as an artifact of stochastic sampling of a linear frequency spectrum. These results show that metabolic rate dynamics in a well studied micro-endotherm are consistent with a highly non-linear feedback control system.

12.
PeerJ ; 3: e1357, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528417

RESUMO

The tunicate Ciona intestinalis is an opportunistic invader with high potential for causing economic losses in aquaculture centers. Recent phylogenetic and population genetic analysis support the existence of a genetic complex described as C. intestinalis with two main dominant species (sp A and B) occurring worldwide. In Chile, the species has been observed around 30°S of latitude, but no official reports exist for the presence of C. intestinalis in southern regions (above 40°S), where most of the mollusk aquaculture centers are located. Here, we used occurrences from multiple invaded regions and extensive field sampling to model and validate the environmental conditions that allow the species to persist and to find the geographic areas with the most suitable environmental conditions for the spread of C. intestinalis in the Chilean coast. By studying the potential expansion of C. intestinalis southward in the Chilean Coast, we aimed to provide valuable information that might help the development of control plans before the species becomes a significant problem, especially above 40°S. Our results highlight that, by using portions of the habitat that are apparently distinguishable, the species seem to be not only genetically distinct, but ecologically distinct as well. The two regional models fitted for sp A and for sp B showed disagreement on which sections of Chilean coastline are considered more suitable for these species. While the model for sp A identifies moderately to highly suitable areas between 30° and 40°S, the model for sp B classifies the areas around 45°S as the most appropriate. Data from field sampling show a positive linear relationship between density of C. intestinalis and the index of suitability for sp A in aquaculture centers. Understanding the relation of the distinct species with the surrounding environment provided valuable insights about probable routes of dispersion in Chile, especially into those areas considered suitable for aquaculture activities but where the species has not yet been recorded. We discuss the implications of our findings as a useful tool to anticipate the invasion of such harmful invasive species with regard to the most relevant environmental variables.

13.
Ecol Evol ; 5(2): 391-408, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25691966

RESUMO

We study the temporal variation in the empirical relationships among body size (S), species richness (R), and abundance (A) in a shallow marine epibenthic faunal community in Coliumo Bay, Chile. We also extend previous analyses by calculating individual energy use (E) and test whether its bivariate and trivariate relationships with S and R are in agreement with expectations derived from the energetic equivalence rule. Carnivorous and scavenger species representing over 95% of sample abundance and biomass were studied. For each individual, body size (g) was measured and E was estimated following published allometric relationships. Data for each sample were tabulated into exponential body size bins, comparing species-averaged values with individual-based estimates which allow species to potentially occupy multiple size classes. For individual-based data, both the number of individuals and species across body size classes are fit by a Weibull function rather than by a power law scaling. Species richness is also a power law of the number of individuals. Energy use shows a piecewise scaling relationship with body size, with energetic equivalence holding true only for size classes above the modal abundance class. Species-based data showed either weak linear or no significant patterns, likely due to the decrease in the number of data points across body size classes. Hence, for individual-based size spectra, the SRA relationship seems to be general despite seasonal forcing and strong disturbances in Coliumo Bay. The unimodal abundance distribution results in a piecewise energy scaling relationship, with small individuals showing a positive scaling and large individuals showing energetic equivalence. Hence, strict energetic equivalence should not be expected for unimodal abundance distributions. On the other hand, while species-based data do not show unimodal SRA relationships, energy use across body size classes did not show significant trends, supporting energetic equivalence.

14.
PLoS One ; 9(7): e102592, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25019408

RESUMO

Pine sawyer beetle species of the genus Monochamus are vectors of the nematode pest Bursaphelenchus xylophilus. The introduction of these species into new habitats is a constant threat for those regions where the forestry industry depends on conifers, and especially on species of Pinus. To obtain information about the potential risk of establishment of these insects in Chile, we performed climate-based niche modeling using data for five North American and four Eurasian Monochamus species using a Maxent approach. The most important variables that account for current distribution of these species are total annual precipitation and annual and seasonal average temperatures, with some differences between North American and Eurasian species. Projections of potential geographic distribution in Chile show that all species could occupy at least 37% of the area between 30° and 53°S, where industrial plantations of P. radiata are concentrated. Our results indicated that Chile seems more suitable for Eurasian than for North American species.


Assuntos
Clima , Besouros/fisiologia , Ecossistema , Modelos Teóricos , Animais , Chile , Espécies Introduzidas , Pinus , Estações do Ano , Especificidade da Espécie , Temperatura
15.
Mar Environ Res ; 79: 16-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22626877

RESUMO

In January 2008, most of the southern coastal zone of the Humboldt Current System was affected by an intense upwelling event. This caused an intrusion of equatorial sub-surface water into the coastal zone, generating severe hypoxic conditions (≤0.5 ml O(2) l(-1)) three days after the beginning of the event. A rapid, massive die-off of marine organisms occurred in Coliumo Bay on January 3rd, affecting zooplankton, mollusks, crustaceans and fishes. Normal oxygen concentrations were observed on January 10th, seven days after the hypoxic event. Here we analyze the response of the epibenthic macrofauna community using data spanning three years of sampling which encompass the short-term hypoxic disturbance in the bay. We found that (i) strong changes in total density, total biomass, and diversity occurred immediately after the hypoxic event, negatively affecting crustaceans and fishes, while gastropods were favored, (ii) initial changes were reverted over a period of three months, (iii) on an inter-annual time scale, species richness and diversity decreased following the hypoxic event. Total density increased strongly, but total biomass showed no clear inter-annual trend. These results show that, while initial recovery from hypoxia was fast, over longer time scales the community exhibited a shift to an alternative structure dominated principally by Nassariid scavenger species.


Assuntos
Anaerobiose/fisiologia , Baías , Ecossistema , Peixes/fisiologia , Invertebrados/fisiologia , Movimentos da Água , Animais , Biodiversidade , Chile , Água do Mar/química
16.
Rev. biol. trop ; 64(1): 33-44, ene.-mar. 2016. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-843258

RESUMO

AbstractEcologists have been largely interested in the description and understanding of the power scaling relationships between body size and abundance of organisms. Many studies have focused on estimating the exponents of these functions across taxonomic groups and spatial scales, to draw inferences about the processes underlying this pattern. The exponents of these functions usually approximate -3/4 at geographical scales, but they deviate from this value when smaller spatial extensions are considered. This has led to propose that body size-abundance relationships at small spatial scales may reflect the impact of environmental changes. This study tests this hypothesis by examining body size spectra of benthic shrimps (Decapoda: Caridea) and snails (Gastropoda) in the Tamiahua lagoon, a brackish body water located in the Eastern coast of Mexico. We measured water quality parameters (dissolved oxygen, salinity, pH, water temperature, sediment organic matter and chemical oxygen demand) and sampled benthic macrofauna during three different climatic conditions of the year (cold, dry and rainy season). Given the small size of most individuals in the benthic macrofaunal samples, we used body volume, instead of weight, to estimate their body size. Body size-abundance relationships of both taxonomic groups were described by tabulating data from each season into base-2 logarithmic body size bins. In both taxonomic groups, observed frequencies per body size class in each season were standardized to yield densities (i.e., individuals/m3). Nonlinear regression analyses were separately performed for each taxonomic group at each season to assess whether body size spectra followed power scaling functions. Additionally, for each taxonomic group, multiple regression analyses were used to determine whether these relationships varied among seasons. Our results indicated that, while body size-abundance relationships in both taxonomic groups followed power functions, the parameters defining the shape of these relationships varied among seasons. These variations in the parameters of the body size-abundance relationships seems to be related to changes in the abundance of individuals within the different body size classes, which seems to follow the seasonal changes that occur in the environmental conditions of the lagoon. Thus, we propose that these body size-abundance relationships are influenced by the frequency and intensity of environmental changes affecting this ecosystem. Rev. Biol. Trop. 64 (1): 33-44. Epub 2016 March 01.


ResumenLos ecólogos han estado muy interesados en describir y comprender las relaciones escalares de potencia entre el tamaño corporal y la abundancia de los organismos. Muchos estudios se han centrado en la estimación de los exponentes de estas funciones a través de grupos taxonómicos y escalas espaciales, para sacar conclusiones acerca de los procesos que subyacen a este patrón. Los exponentes de estas funciones generalmente se aproximan -3/4 a escalas geográficas, pero se apartan de este valor cuando se consideran extensiones espaciales más pequeñas. Esto ha llevado a proponer que las relaciones tamaño corporal-abundancia en pequeñas escalas espaciales puede reflejar el impacto de cambios ambientales. Este estudio pone a prueba esta hipótesis mediante el examen de los espectros de tamaño corporal de camarones bentónicos (Decapoda: Caridea) y caracoles (Gastropoda) en la laguna de Tamiahua, un cuerpo de agua salobre situado en la costa oriental de México. Medimos parámetros de calidad del agua (oxígeno disuelto, salinidad, pH, temperatura del agua, materia orgánica en los sedimentos y demanda química de oxígeno) y muestreamos la macrofauna bentónica en tres momentos del año que difieren en sus condiciones climáticas (estaciones fría, seca y de lluvias). Dado el pequeño tamaño de la mayoría de los individuos en las muestras de macrofauna bentónica, se utilizó el volumen del cuerpo, en lugar de peso, para estimar su tamaño corporal. Las relaciones tamaño corporalabundancia de ambos grupos taxonómicos fueron descritas ordenando los datos de cada estación en clases de tamaño corporal cuya amplitud estaba establecida por una escala logarítmica de base 2. En ambos grupos taxonómicos, las frecuencias observadas por clase de tamaño corporal en cada estación se estandarizaron a densidades de captura (es decir, individuos/m3). Análisis de regresión no-lineal se realizaron separadamente para cada grupo taxonómico en cada estación del año para evaluar si los espectros de tamaño corporal seguían funciones escalares de potencia. Además, para cada grupo taxonómico, se utilizaron análisis de regresión múltiple para determinar si estas relaciones variaban entre estaciones. Nuestros resultados indicaron que, mientras las relaciones tamaño corporal-abundancia en ambos grupos taxonómicos siguieron funciones potenciales, los parámetros que definen la forma de estas relaciones variaron entre estaciones. Estas variaciones en los parámetros de las relaciones tamaño corporal-abundancia parecen estar relacionadas con cambios en la abundancia de los individuos dentro de las diferentes clases de tamaño corporal, que parece seguir los cambios estacionales que se producen en las condiciones ambientales de la laguna. Por lo tanto, proponemos que estas relaciones tamaño corporalabundancia se ven influidas por la frecuencia e intensidad de los cambios ambientales que afectan este ecosistema.


Assuntos
Animais , Caramujos/anatomia & histologia , Caramujos/classificação , Qualidade da Água , Palaemonidae/anatomia & histologia , Palaemonidae/classificação , Tamanho Corporal , Estações do Ano , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA