Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Nat Rev Mol Cell Biol ; 22(3): 165-182, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32873929

RESUMO

The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid-liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction.


Assuntos
Nucléolo Celular/química , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Ciclo Celular/fisiologia , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Fracionamento Químico , Expressão Gênica , Humanos , Extração Líquido-Líquido , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Ribonucleoproteínas/metabolismo , Ribossomos/fisiologia
2.
Mol Cell ; 84(8): 1422-1441.e14, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38521067

RESUMO

The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations, and multi-contact 3C and find that, by contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a topoisomerase-II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias topoisomerase II activity toward decatenation. At the second stage, the loops are released, and the formation of new entanglements is prevented by lower topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed in experiments and models, a normal interphase state cannot be acquired.


Assuntos
Cromossomos , DNA Topoisomerases Tipo II , DNA Topoisomerases Tipo II/genética , Cromossomos/genética , Mitose/genética , Interfase/genética , Polímeros
3.
Mol Cell ; 83(18): 3268-3282.e7, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37689068

RESUMO

Heritable non-genetic information can regulate a variety of complex phenotypes. However, what specific non-genetic cues are transmitted from parents to their descendants are poorly understood. Here, we perform metabolic methyl-labeling experiments to track the heritable transmission of methylation from ancestors to their descendants in the nematode Caenorhabditis elegans (C. elegans). We find heritable methylation in DNA, RNA, proteins, and lipids. We find that parental starvation elicits reduced fertility, increased heat stress resistance, and extended longevity in fed, naïve progeny. This intergenerational hormesis is accompanied by a heritable increase in N6'-dimethyl adenosine (m6,2A) on the 18S ribosomal RNA at adenosines 1735 and 1736. We identified DIMT-1/DIMT1 as the m6,2A and BUD-23/BUD23 as the m7G methyltransferases in C. elegans that are both required for intergenerational hormesis, while other rRNA methyltransferases are dispensable. This study labels and tracks heritable non-genetic material across generations and demonstrates the importance of rRNA methylation for regulating epigenetic inheritance.


Assuntos
Caenorhabditis elegans , Hormese , Animais , RNA Ribossômico 18S , Caenorhabditis elegans/genética , Metiltransferases/genética , Adenosina
4.
Mol Cell ; 82(2): 404-419.e9, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34798057

RESUMO

The epitranscriptome has emerged as a new fundamental layer of control of gene expression. Nevertheless, the determination of the transcriptome-wide occupancy and function of RNA modifications remains challenging. Here we have developed Rho-seq, an integrated pipeline detecting a range of modifications through differential modification-dependent rhodamine labeling. Using Rho-seq, we confirm that the reduction of uridine to dihydrouridine (D) by the Dus reductase enzymes targets tRNAs in E. coli and fission yeast. We find that the D modification is also present on fission yeast mRNAs, particularly those encoding cytoskeleton-related proteins, which is supported by large-scale proteome analyses and ribosome profiling. We show that the α-tubulin encoding mRNA nda2 undergoes Dus3-dependent dihydrouridylation, which affects its translation. The absence of the modification on nda2 mRNA strongly impacts meiotic chromosome segregation, resulting in low gamete viability. Applying Rho-seq to human cells revealed that tubulin mRNA dihydrouridylation is evolutionarily conserved.


Assuntos
Segregação de Cromossomos , Escherichia coli/genética , Meiose , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , RNA Fúngico/genética , RNA Mensageiro/genética , Schizosaccharomyces/genética , Uridina/metabolismo , Cromossomos Bacterianos , Cromossomos Fúngicos , Cromossomos Humanos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Células HCT116 , Humanos , Oxirredução , RNA Bacteriano/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Análise de Sequência de RNA , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
5.
Genes Dev ; 35(15-16): 1123-1141, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301768

RESUMO

Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB)-specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2'-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.


Assuntos
Células Intersticiais de Cajal/metabolismo , Metilação , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/metabolismo , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Colangiocarcinoma/tratamento farmacológico , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Fosforilação , RNA Nuclear Pequeno/química , Ribonucleoproteínas/metabolismo , Spliceossomos/genética , Tratamento Farmacológico da COVID-19
6.
Nature ; 600(7889): 536-542, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819669

RESUMO

The cell is a multi-scale structure with modular organization across at least four orders of magnitude1. Two central approaches for mapping this structure-protein fluorescent imaging and protein biophysical association-each generate extensive datasets, but of distinct qualities and resolutions that are typically treated separately2,3. Here we integrate immunofluorescence images in the Human Protein Atlas4 with affinity purifications in BioPlex5 to create a unified hierarchical map of human cell architecture. Integration is achieved by configuring each approach as a general measure of protein distance, then calibrating the two measures using machine learning. The map, known as the multi-scale integrated cell (MuSIC 1.0), resolves 69 subcellular systems, of which approximately half are to our knowledge undocumented. Accordingly, we perform 134 additional affinity purifications and validate subunit associations for the majority of systems. The map reveals a pre-ribosomal RNA processing assembly and accessory factors, which we show govern rRNA maturation, and functional roles for SRRM1 and FAM120C in chromatin and RPS3A in splicing. By integration across scales, MuSIC increases the resolution of imaging while giving protein interactions a spatial dimension, paving the way to incorporate diverse types of data in proteome-wide cell maps.


Assuntos
Cromossomos , Proteoma , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Cromatina/genética , Cromossomos/metabolismo , Humanos , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteoma/metabolismo , RNA Ribossômico , Proteínas de Ligação a RNA/genética
7.
Mol Cell ; 76(5): 694-696, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31809741

RESUMO

The nucleolus is a phase-separated cell condensate where the initial steps of ribosome biogenesis take place. In this issue of Molecular Cell, Yao et al. (2019) report a super-resolution microscopy analysis of the internal structure of the nucleolus, revealing how nascent precursor ribosomal RNAs are initially partitioned and processed in this multilayered biocondensate.


Assuntos
Precursores de RNA , RNA Ribossômico , Nucléolo Celular , Humanos , Transporte de RNA , Ribossomos
8.
EMBO Rep ; 25(6): 2786-2811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654122

RESUMO

Ribosome biogenesis is initiated in the nucleolus, a multiphase biomolecular condensate formed by liquid-liquid phase separation. The nucleolus is a powerful disease biomarker and stress biosensor whose morphology reflects function. Here we have used digital holographic microscopy (DHM), a label-free quantitative phase contrast microscopy technique, to detect nucleoli in adherent and suspension human cells. We trained convolutional neural networks to detect and quantify nucleoli automatically on DHM images. Holograms containing cell optical thickness information allowed us to define a novel index which we used to distinguish nucleoli whose material state had been modulated optogenetically by blue-light-induced protein aggregation. Nucleoli whose function had been impacted by drug treatment or depletion of ribosomal proteins could also be distinguished. We explored the potential of the technology to detect other natural and pathological condensates, such as those formed upon overexpression of a mutant form of huntingtin, ataxin-3, or TDP-43, and also other cell assemblies (lipid droplets). We conclude that DHM is a powerful tool for quantitatively characterizing nucleoli and other cell assemblies, including their material state, without any staining.


Assuntos
Nucléolo Celular , Holografia , Humanos , Nucléolo Celular/metabolismo , Holografia/métodos , Redes Neurais de Computação , Microscopia/métodos , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Ataxina-3/metabolismo , Ataxina-3/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Microscopia de Contraste de Fase/métodos , Imageamento Quantitativo de Fase
9.
PLoS Genet ; 18(1): e1010012, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041640

RESUMO

Ribosomes are essential nanomachines responsible for protein production. Although ribosomes are present in every living cell, ribosome biogenesis dysfunction diseases, called ribosomopathies, impact particular tissues specifically. Here, we evaluate the importance of the box C/D snoRNA-associated ribosomal RNA methyltransferase fibrillarin (Fbl) in the early embryonic development of Xenopus laevis. We report that in developing embryos, the neural plate, neural crest cells (NCCs), and NCC derivatives are rich in fbl transcripts. Fbl knockdown leads to striking morphological defects affecting the eyes and craniofacial skeleton, due to lack of NCC survival caused by massive p53-dependent apoptosis. Fbl is required for efficient pre-rRNA processing and 18S rRNA production, which explains the early developmental defects. Using RiboMethSeq, we systematically reinvestigated ribosomal RNA 2'-O methylation in X. laevis, confirming all 89 previously mapped sites and identifying 15 novel putative positions in 18S and 28S rRNA. Twenty-three positions, including 10 of the new ones, were validated orthogonally by low dNTP primer extension. Bioinformatic screening of the X. laevis transcriptome revealed candidate box C/D snoRNAs for all methylated positions. Mapping of 2'-O methylation at six developmental stages in individual embryos indicated a trend towards reduced methylation at specific positions during development. We conclude that fibrillarin knockdown in early Xenopus embryos causes reduced production of functional ribosomal subunits, thus impairing NCC formation and migration.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 28S/metabolismo , Xenopus laevis/crescimento & desenvolvimento , Animais , Olho/crescimento & desenvolvimento , Olho/metabolismo , Técnicas de Silenciamento de Genes , Metilação , Crista Neural/crescimento & desenvolvimento , Crista Neural/metabolismo , Placa Neural/crescimento & desenvolvimento , Placa Neural/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
10.
Blood ; 139(21): 3111-3126, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35213692

RESUMO

The congenital bone marrow failure syndrome Diamond-Blackfan anemia (DBA) is typically associated with variants in ribosomal protein (RP) genes impairing erythroid cell development. Here we report multiple individuals with biallelic HEATR3 variants exhibiting bone marrow failure, short stature, facial and acromelic dysmorphic features, and intellectual disability. These variants destabilize a protein whose yeast homolog is known to synchronize the nuclear import of RPs uL5 (RPL11) and uL18 (RPL5), which are both critical for producing ribosomal subunits and for stabilizing the p53 tumor suppressor when ribosome biogenesis is compromised. Expression of HEATR3 variants or repression of HEATR3 expression in primary cells, cell lines of various origins, and yeast models impairs growth, differentiation, pre-ribosomal RNA processing, and ribosomal subunit formation reminiscent of DBA models of large subunit RP gene variants. Consistent with a role of HEATR3 in RP import, HEATR3-depleted cells or patient-derived fibroblasts display reduced nuclear accumulation of uL18. Hematopoietic progenitor cells expressing HEATR3 variants or small-hairpin RNAs knocking down HEATR3 synthesis reveal abnormal acceleration of erythrocyte maturation coupled to severe proliferation defects that are independent of p53 activation. Our study uncovers a new pathophysiological mechanism leading to DBA driven by biallelic HEATR3 variants and the destabilization of a nuclear import protein important for ribosome biogenesis.


Assuntos
Anemia de Diamond-Blackfan , Proteínas , Transporte Ativo do Núcleo Celular/genética , Anemia de Diamond-Blackfan/metabolismo , Humanos , Mutação , Proteínas/genética , Proteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Nucleic Acids Res ; 50(11): 6284-6299, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35648437

RESUMO

NAT10 is an essential enzyme that catalyzes N4-acetylcytidine (ac4C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10's essential function remain to be defined. Here, we demonstrate that SNORD13 is required for acetylation of a single cytidine of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac4C is dispensable for human cell growth, ribosome biogenesis, translation and development. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation 'machinery' that led to the characterization of many novel metazoan SNORD13 genes. This includes an atypical SNORD13-like RNA in Drosophila melanogaster which guides ac4C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that Caenorhabditis elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Our findings shed light on the molecular mechanisms underlying SNORD13-mediated rRNA acetylation across eukaryotic evolution and raise new questions regarding the biological and evolutionary relevance of this highly conserved rRNA modification.


Assuntos
Eucariotos , RNA Ribossômico 18S , RNA Nucleolar Pequeno , Acetilação , Animais , Eucariotos/genética , Eucariotos/metabolismo , Humanos , RNA Ribossômico , RNA Ribossômico 18S/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Subunidades Ribossômicas Menores/metabolismo
12.
Am J Hum Genet ; 106(5): 694-706, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32359472

RESUMO

How mutations in the non-coding U8 snoRNA cause the neurological disorder leukoencephalopathy with calcifications and cysts (LCC) is poorly understood. Here, we report the generation of a mutant U8 animal model for interrogating LCC-associated pathology. Mutant U8 zebrafish exhibit defective central nervous system development, a disturbance of ribosomal RNA (rRNA) biogenesis and tp53 activation, which monitors ribosome biogenesis. Further, we demonstrate that fibroblasts from individuals with LCC are defective in rRNA processing. Human precursor-U8 (pre-U8) containing a 3' extension rescued mutant U8 zebrafish, and this result indicates conserved biological function. Analysis of LCC-associated U8 mutations in zebrafish revealed that one null and one functional allele contribute to LCC. We show that mutations in three nucleotides at the 5' end of pre-U8 alter the processing of the 3' extension, and we identify a previously unknown base-pairing interaction between the 5' end and the 3' extension of human pre-U8. Indeed, LCC-associated mutations in any one of seven nucleotides in the 5' end and 3' extension alter the processing of pre-U8, and these mutations are present on a single allele in almost all individuals with LCC identified to date. Given genetic data indicating that bi-allelic null U8 alleles are likely incompatible with human development, and that LCC is not caused by haploinsufficiency, the identification of hypomorphic misprocessing mutations that mediate viable embryogenesis furthers our understanding of LCC molecular pathology and cerebral vascular homeostasis.


Assuntos
Alelos , Calcinose/genética , Cistos do Sistema Nervoso Central/genética , Cistos/genética , Leucoencefalopatias/genética , Mutação , RNA Nucleolar Pequeno/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Calcinose/patologia , Cistos do Sistema Nervoso Central/patologia , Sequência Conservada , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Humanos , Leucoencefalopatias/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
RNA Biol ; 20(1): 652-665, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37635368

RESUMO

Ribosomal RNAs are decorated by numerous post-transcriptional modifications whose exact roles in ribosome biogenesis, function, and human pathophysiology remain largely unknown. Here, we report a targeted direct rRNA sequencing approach involving a substrate selection step and demonstrate its suitability to identify differential modification sites in combination with the JACUSA2 software. We compared JACUSA2 to other tools designed for RNA modification detection and show that JACUSA2 outperforms other software with regard to detection of base modifications such as methylation, acetylation and aminocarboxypropylation. To illustrate its widespread usability, we applied our method to a collection of CRISPR-Cas9 engineered colon carcinoma cells lacking specific enzymatic activities responsible for particular rRNA modifications and systematically compared them to isogenic wild-type RNAs. Besides the numerous 2'-O methylated riboses and pseudouridylated residues, our approach was suitable to reliably identify differential base methylation and acetylation events. Importantly, our method does not require any prior knowledge of modification sites or the need to train complex models. We further report for the first time detection of human rRNA modifications by direct RNA-sequencing on Flongle flow cells, the smallest-scale nanopore flow cell available to date. The use of these smaller flow cells reduces RNA input requirements, making our workflow suitable for the analysis of samples with limited availability and clinical work.


Assuntos
Nanoporos , RNA , Humanos , RNA/genética , Ribossomos/genética , RNA Ribossômico/genética , Processamento Pós-Transcricional do RNA
14.
EMBO Rep ; 21(7): e49443, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32350990

RESUMO

RNA modifications have recently emerged as an important layer of gene regulation. N6-methyladenosine (m6 A) is the most prominent modification on eukaryotic messenger RNA and has also been found on noncoding RNA, including ribosomal and small nuclear RNA. Recently, several m6 A methyltransferases were identified, uncovering the specificity of m6 A deposition by structurally distinct enzymes. In order to discover additional m6 A enzymes, we performed an RNAi screen to deplete annotated orthologs of human methyltransferase-like proteins (METTLs) in Drosophila cells and identified CG9666, the ortholog of human METTL5. We show that CG9666 is required for specific deposition of m6 A on 18S ribosomal RNA via direct interaction with the Drosophila ortholog of human TRMT112, CG12975. Depletion of CG9666 yields a subsequent loss of the 18S rRNA m6 A modification, which lies in the vicinity of the ribosome decoding center; however, this does not compromise rRNA maturation. Instead, a loss of CG9666-mediated m6 A impacts fly behavior, providing an underlying molecular mechanism for the reported human phenotype in intellectual disability. Thus, our work expands the repertoire of m6 A methyltransferases, demonstrates the specialization of these enzymes, and further addresses the significance of ribosomal RNA modifications in gene expression and animal behavior.


Assuntos
Drosophila , Metiltransferases , Adenosina , Animais , Drosophila/genética , Humanos , Metiltransferases/genética , RNA Ribossômico , RNA Ribossômico 18S/genética , Caminhada
15.
Nature ; 531(7595): 518-22, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27008969

RESUMO

Focal amplifications of chromosome 3p13-3p14 occur in about 10% of melanomas and are associated with a poor prognosis. The melanoma-specific oncogene MITF resides at the epicentre of this amplicon. However, whether other loci present in this amplicon also contribute to melanomagenesis is unknown. Here we show that the recently annotated long non-coding RNA (lncRNA) gene SAMMSON is consistently co-gained with MITF. In addition, SAMMSON is a target of the lineage-specific transcription factor SOX10 and its expression is detectable in more than 90% of human melanomas. Whereas exogenous SAMMSON increases the clonogenic potential in trans, SAMMSON knockdown drastically decreases the viability of melanoma cells irrespective of their transcriptional cell state and BRAF, NRAS or TP53 mutational status. Moreover, SAMMSON targeting sensitizes melanoma to MAPK-targeting therapeutics both in vitro and in patient-derived xenograft models. Mechanistically, SAMMSON interacts with p32, a master regulator of mitochondrial homeostasis and metabolism, to increase its mitochondrial targeting and pro-oncogenic function. Our results indicate that silencing of the lineage addiction oncogene SAMMSON disrupts vital mitochondrial functions in a cancer-cell-specific manner; this silencing is therefore expected to deliver highly effective and tissue-restricted anti-melanoma therapeutic responses.


Assuntos
Melanoma/genética , Melanoma/patologia , Oncogenes/genética , RNA Longo não Codificante/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Proteínas de Transporte , Linhagem da Célula , Proliferação de Células , Sobrevivência Celular , Cromossomos Humanos Par 3/genética , Células Clonais/metabolismo , Células Clonais/patologia , Feminino , Amplificação de Genes/genética , Técnicas de Silenciamento de Genes , Humanos , Melanoma/terapia , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular , RNA Longo não Codificante/uso terapêutico , Fatores de Transcrição SOXE/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nucleic Acids Res ; 48(19): e110, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32976574

RESUMO

Developing methods for accurate detection of RNA modifications remains a major challenge in epitranscriptomics. Next-generation sequencing-based mapping approaches have recently emerged but, often, they are not quantitative and lack specificity. Pseudouridine (ψ), produced by uridine isomerization, is one of the most abundant RNA modification. ψ mapping classically involves derivatization with soluble carbodiimide (CMCT), which is prone to variation making this approach only semi-quantitative. Here, we developed 'HydraPsiSeq', a novel quantitative ψ mapping technique relying on specific protection from hydrazine/aniline cleavage. HydraPsiSeq is quantitative because the obtained signal directly reflects pseudouridine level. Furthermore, normalization to natural unmodified RNA and/or to synthetic in vitro transcripts allows absolute measurements of modification levels. HydraPsiSeq requires minute amounts of RNA (as low as 10-50 ng), making it compatible with high-throughput profiling of diverse biological and clinical samples. Exploring the potential of HydraPsiSeq, we profiled human rRNAs, revealing strong variations in pseudouridylation levels at ∼20-25 positions out of total 104 sites. We also observed the dynamics of rRNA pseudouridylation throughout chondrogenic differentiation of human bone marrow stem cells. In conclusion, HydraPsiSeq is a robust approach for the systematic mapping and accurate quantification of pseudouridines in RNAs with applications in disease, aging, development, differentiation and/or stress response.


Assuntos
Pseudouridina/isolamento & purificação , RNA Mensageiro , RNA Ribossômico , RNA de Transferência , Análise de Sequência de RNA/métodos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais , Saccharomyces cerevisiae/genética
17.
Nucleic Acids Res ; 48(21): 12310-12325, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33166396

RESUMO

The Mtq2-Trm112 methyltransferase modifies the eukaryotic translation termination factor eRF1 on the glutamine side chain of a universally conserved GGQ motif that is essential for release of newly synthesized peptides. Although this modification is found in the three domains of life, its exact role in eukaryotes remains unknown. As the deletion of MTQ2 leads to severe growth impairment in yeast, we have investigated its role further and tested its putative involvement in ribosome biogenesis. We found that Mtq2 is associated with nuclear 60S subunit precursors, and we demonstrate that its catalytic activity is required for nucleolar release of pre-60S and for efficient production of mature 5.8S and 25S rRNAs. Thus, we identify Mtq2 as a novel ribosome assembly factor important for large ribosomal subunit formation. We propose that Mtq2-Trm112 might modify eRF1 in the nucleus as part of a quality control mechanism aimed at proof-reading the peptidyl transferase center, where it will subsequently bind during translation termination.


Assuntos
Regulação Fúngica da Expressão Gênica , Metiltransferases/genética , Biogênese de Organelas , Fatores de Terminação de Peptídeos/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , tRNA Metiltransferases/genética , Sítios de Ligação , Biocatálise , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Ribossômico/biossíntese , RNA Ribossômico/genética , RNA Ribossômico 5,8S/biossíntese , RNA Ribossômico 5,8S/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
18.
Nucleic Acids Res ; 48(7): 3848-3868, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31996908

RESUMO

U3 snoRNA and the associated Rrp9/U3-55K protein are essential for 18S rRNA production by the SSU-processome complex. U3 and Rrp9 are required for early pre-rRNA cleavages at sites A0, A1 and A2, but the mechanism remains unclear. Substitution of Arg 289 in Rrp9 to Ala (R289A) specifically reduced cleavage at sites A1 and A2. Surprisingly, R289 is located on the surface of the Rrp9 ß-propeller structure opposite to U3 snoRNA. To understand this, we first characterized the protein-protein interaction network of Rrp9 within the SSU-processome. This identified a direct interaction between the Rrp9 ß-propeller domain and Rrp36, the strength of which was reduced by the R289A substitution, implicating this interaction in the observed processing phenotype. The Rrp9 R289A mutation also showed strong synergistic negative interactions with mutations in U3 that destabilize the U3/pre-rRNA base-pair interactions or reduce the length of their linking segments. We propose that the Rrp9 ß-propeller and U3/pre-rRNA binding cooperate in the structure or stability of the SSU-processome. Additionally, our analysis of U3 variants gave insights into the function of individual segments of the 5'-terminal 72-nt sequence of U3. We interpret these data in the light of recently reported SSU-processome structures.


Assuntos
Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S/metabolismo , RNA Nucleolar Pequeno/química , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , RNA Nucleolar Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Proc Natl Acad Sci U S A ; 116(35): 17330-17335, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31399547

RESUMO

The nucleolus is a prominent nuclear condensate that plays a central role in ribosome biogenesis by facilitating the transcription and processing of nascent ribosomal RNA (rRNA). A number of studies have highlighted the active viscoelastic nature of the nucleolus, whose material properties and phase behavior are a consequence of underlying molecular interactions. However, the ways in which the material properties of the nucleolus impact its function in rRNA biogenesis are not understood. Here we utilize the Cry2olig optogenetic system to modulate the viscoelastic properties of the nucleolus. We show that above a threshold concentration of Cry2olig protein, the nucleolus can be gelled into a tightly linked, low mobility meshwork. Gelled nucleoli no longer coalesce and relax into spheres but nonetheless permit continued internal molecular mobility of small proteins. These changes in nucleolar material properties manifest in specific alterations in rRNA processing steps, including a buildup of larger rRNA precursors and a depletion of smaller rRNA precursors. We propose that the flux of processed rRNA may be actively tuned by the cell through modulating nucleolar material properties, which suggests the potential of materials-based approaches for therapeutic intervention in ribosomopathies.


Assuntos
Nucléolo Celular/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , RNA Ribossômico/metabolismo , Animais , Camundongos , Células NIH 3T3 , Optogenética , Xenopus laevis
20.
RNA Biol ; 18(sup1): 61-74, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34775914

RESUMO

Ribosomes are essential nanomachines responsible for all protein production in cells. Ribosome biogenesis and function are energy costly processes, they are tightly regulated to match cellular needs. In cancer, major pathways that control ribosome biogenesis and function are often deregulated to ensure cell survival and to accommodate the continuous proliferation of tumour cells. Ribosomal RNAs (rRNAs) are abundantly modified with 2'-O-methylation (Nm, ribomethylation) being one of the most common modifications. In eukaryotic ribosomes, ribomethylation is performed by the methyltransferase Fibrillarin guided by box C/D small nucleolar RNAs (snoRNAs). Accumulating evidences indicate that snoRNA expression and ribosome methylation profiles are altered in cancer. Here we review our current knowledge on differential snoRNA expression and rRNA 2'-O methylation in the context of human malignancies, and discuss the consequences and opportunities for cancer diagnostics, prognostics, and therapeutics.


Assuntos
Neoplasias/patologia , Processamento Pós-Transcricional do RNA , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Nucleolar Pequeno/genética , Ribossomos/metabolismo , Animais , Humanos , Metilação , Neoplasias/genética , Ribossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA