RESUMO
Coastal wetlands are crucial in climate change regulation due to their capacity to act as either sinks or sources of carbon, resulting from the balance between greenhouse gas (GHG) emissions, mainly methane (CH4), and soil carbon sequestration. Despite the paramount role of wetlands in climate regulation few studies investigate both aspects. The Camargue is one of the largest wetlands in Europe, yet the ways in which environmental and anthropic factors drive carbon dynamics remain poorly studied. We examined GHG emissions and soil organic carbon (SOC) stocks and accumulation rates in twelve representative wetlands, including two rice fields, to gain insights into the carbon dynamics and how it is influenced by hydrology and salinity. Mean CH4 rates ranged between - 87.0 and 131.0 mg m-2 h-1and the main drivers were water conductivity and redox, water table depth and soil temperature. High emission rates were restricted to freshwater conditions during summer flooding periods whereas they were low in wetlands subjected to summer drought and water conductivity higher than 10 mS cm-1. Nitrous oxide emissions were low, ranging from - 0.5 to 0.9 mg N2O m-2 h-1. The SOC stocks in the upper meter ranged from 17 to 90 Mg OC ha-1. Our research highlights the critical role of low-saline wetlands in carbon budgeting which potentially are large sources of CH4 but also contain the largest SOC stocks in the Camargue. Natural hydroperiods, involving summer drought, can maintain them as carbon sinks, but altered hydrology can transform them into sources. Artificial freshwater supply during summer leads to substantial CH4 emissions, offsetting their SOC accumulation rates. In conclusion, we advocate for readjusting the altered hydrology in marshes and for the search of management compromises to ensure the compatibility of economic and leisure activities with the preservation of the inherent climate-regulating capacity of coastal wetlands.
RESUMO
Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha-1 in the top 30 cm and 231 ± 134 Mg SOC ha-1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies.
RESUMO
Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1-3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions.