Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 64(3): 388-98, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23183935

RESUMO

Mediterranean climate characteristics and carbonate are key factors governing soil heavy-metal accumulation, and low organic matter (OM) content could limit the ability of microbial populations to cope with resulting stress. We studied the effects of metal contamination on a combination of biological parameters in soils having these characteristics. With this aim, soils were spiked with a mixture of cadmium, copper, lead, and zinc, at the two limit values proposed by current European legislation, and incubated for ≤12 months. Then we measured biochemical (phosphatase, urease, ß-galactosidase, arylsulfatase, and dehydrogenase activities) and microbial (fungal and bacterial DNA concentration by quantitative polymerase chain reaction) parameters. All of the enzyme activities were strongly affected by metal contamination and showed the following inhibition sequence: phosphatase (30-64 %) < arylsulfatase (38-97 %) ≤ urease (1-100 %) ≤ ß-galactosidase (30-100 %) < dehydrogenase (69-100 %). The high variability among soils was attributed to the different proportion of fine mineral fraction, OM, crystalline iron oxides, and divalent cations in soil solution. The decrease of fungal DNA concentration in metal-spiked soils was negligible, whereas the decrease of bacterial DNA was ~1-54 % at the lowest level and 2-69 % at the highest level of contamination. The lowest bacterial DNA decrease occurred in soils with the highest OM, clay, and carbonate contents. Finally, regarding the strong inhibition of the biological parameters measured and the alteration of the fungal/bacterial DNA ratio, we provide strong evidence that disturbance on the system, even within the limiting values of contamination proposed by the current European Directive, could alter key soil processes. These limiting values should be established according to soil characteristics and/or revised when contamination is produced by a mixture of heavy metals.


Assuntos
Agricultura , Substâncias Húmicas/análise , Metais Pesados/toxicidade , Consórcios Microbianos/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/toxicidade , Fenômenos Bioquímicos , Carbonatos/análise , Fenômenos Químicos , Clima , Monitoramento Ambiental , Enzimas/análise , Região do Mediterrâneo , Metais Pesados/análise , Microbiologia do Solo/normas , Poluentes do Solo/análise
2.
Environ Pollut ; 243(Pt B): 1861-1866, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30408874

RESUMO

The use of the soil can alter its functionality and influence the (bio)availability of any contaminants present. Our study considers two types of agricultural soils, rainfed and olive soils, managed according to conventional practices that apply contaminants directly to the soil (fertilizers, pesticides, fungicides, etc.) and receive contaminants from the atmosphere (traffic, industry, etc.); and a forest soil that is not subject to these agricultural practices. In this scenario, we consider a mixture of 16 trace elements (As, Ba, Be, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sb, Sn, V and Zn), since their interactions with the soil can produce synergistic and/or antagonistic effects that are not considered in most studies. We studied whether the content and (bio)availability of low concentrations of a mixture of trace elements affect the soil functionality in terms of the activity of some key enzymes We analysed the total, potentially and immediately available fractions, the soil parameters and soil enzyme activity. The results show that the functionality of the soils studied was affected despite the low concentrations of trace elements. The highest concentrations of total trace elements and available fractions were found in forest soils compared to the other two uses. Soil enzyme activity is best explained by the potentially available fraction of a mixture of trace elements and physico-chemical soil variables. In our study, pH, total nitrogen, organic carbon and fine mineral particles (silt and clay) had an influence on soil enzyme activity and the (bio)available fractions of trace elements.


Assuntos
Enzimas/metabolismo , Microbiota/fisiologia , Microbiologia do Solo , Solo/química , Oligoelementos/química , Agricultura , Ativação Enzimática/efeitos dos fármacos , Fertilizantes , Praguicidas/química , Praguicidas/farmacologia , Poluentes do Solo/química , Poluentes do Solo/farmacologia , Oligoelementos/farmacologia
3.
Sci Total Environ ; 551-552: 57-65, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26874761

RESUMO

Abandonment of vineyards after uprooting has dramatically increased in last decades in Mediterranean countries, often followed by vegetation expansion processes. Inadequate management strategies can have negative consequences on soil quality. We studied how the age and type of vegetation cover and several environmental characteristics (lithology, soil properties, vineyard slope and so on) after vineyard uprooting and abandonment contribute to the variation patterns in total, HAc (acetic acid-method, HAc) and EDTA-extractable (ethylenediaminetetraacetic acid-method) concentrations of Cd, Cu, Pb and Zn in soils. We sampled 141 points from vineyards and abandoned vineyard Mediterranean soils recolonized by natural vegetation in recent decades. The contribution of several environmental variables (e.g. age and type of vegetation cover, lithology, soil properties and vineyard slope) to the total and extractable concentrations of metals was evaluated by canonical ordination based on redundancy analysis, considering the interaction between both environmental and response variables. The ranges of total metal contents were: 0.01-0.15 (Cd), 2.6-34 (Cu), 6.6-30 (Pb), and 29-92mgkg(-1) (Zn). Cadmium (11-100%) had the highest relative extractability with both extractants, and Zn and Pb the lowest. The total and EDTA-extractable of Cd, Pb and Zn were positively related to the age of abandonment, to the presence of Agrostis castellana and Retama sphaerocarpa, and to the contents of Fe-oxides, clay and organic matter (OM). A different pattern was noted for Cu, positively related to vineyard soils. Soil properties successfully explained HAc-extractable Cd, Cu, Pb and Zn but the age and type of vegetation cover lost significance. Clay content was negatively related to HAc-extractable Cu and Pb; and OM was positively related to HAc-Cd and Zn. In conclusion, the time elapsed after vineyard uprooting, and subsequent land abandonment, affects the soil content and availability of metals, and this impact depended on the colonizing plant species and soil properties.


Assuntos
Monitoramento Ambiental , Fazendas , Metais/análise , Poluentes do Solo/análise , Agricultura , Cádmio/análise , Cobre/análise , Ácido Edético/análise , Região do Mediterrâneo , Solo , Vinho , Zinco/análise
4.
Environ Toxicol Chem ; 34(1): 37-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25318656

RESUMO

The contribution of the nature instead of the total content of soil parameters relevant to metal bioavailability in lettuce was tested using a series of low-polluted Mediterranean agricultural calcareous soils offering natural gradients in the content and composition of carbonate, organic, and oxide fractions. Two datasets were compared by canonical ordination based on redundancy analysis: total concentrations (TC dataset) of main soil parameters (constituents, phases, or elements) involved in metal retention and bioavailability; and chemically defined reactive fractions of these parameters (RF dataset). The metal bioavailability patterns were satisfactorily explained only when the RF dataset was used, and the results showed that the proportion of crystalline Fe oxides, dissolved organic C, diethylene-triamine-pentaacetic acid (DTPA)-extractable Cu and Zn, and a labile organic pool accounted for 76% of the variance. In addition, 2 multipollution scenarios by metal spiking were tested that showed better relationships with the RF dataset than with the TC dataset (up to 17% more) and new reactive fractions involved. For Mediterranean calcareous soils, the use of reactive pools of soil parameters rather than their total contents improved the relationships between soil constituents and metal bioavailability. Such pool determinations should be systematically included in studies dealing with bioavailability or risk assessment.


Assuntos
Carbonato de Cálcio/análise , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Agricultura , Cádmio/análise , Cobre/análise , Poluição Ambiental , Chumbo/análise , Zinco/análise
5.
Environ Sci Pollut Res Int ; 21(9): 6176-87, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24477337

RESUMO

Organic matter (OM) plays a key role in microbial response to soil metal contamination, yet little is known about how the composition of the OM affects this response in Mediterranean calcareous agricultural soils. A set of Mediterranean soils, with different contents and compositions of OM and carbonate and fine mineral fractions, was spiked with a mixture of Cd, Cu, Pb, and Zn and incubated for 12 months for aging. Microbial (Biolog Ecoplates) and enzyme activities (dehydrogenase, DHA; ß-galactosidase, BGAL; phosphatase, PHOS; and urease, URE) were assessed and related to metal availability and soil physicochemical parameters. All enzyme activities decreased significantly with metal contamination: 36-68 % (DHA), 24-85 % (BGAL), 22-72 % (PHOS), and 14-84 % (URE) inhibitions. Similarly, catabolic activity was negatively affected, especially phenol catabolism (∼86 % compared to 25-55 % inhibition for the rest of the substrates). Catabolic and DHA activities were negatively correlated with ethylenediaminetetraacetic acid (EDTA)-extractable Cd and Pb, but positively with CaCl2, NaNO3, and DTPA-extractable Cu and Zn. Soluble OM (water- and hot-water-soluble organic C) was positively related to enzyme and catabolic activities. Recalcitrant OM and fine mineral fractions were positively related to BGAL and PHOS. Conversely, catabolic activity was negatively related to clay and positively to silt and labile OM. Results indicate that the microbial response to metal contamination is highly affected by texture and OM composition.


Assuntos
Metais/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , Agricultura , Carbonato de Cálcio/química , Ácido Edético , Poluição Ambiental/estatística & dados numéricos , Metais/análise , Tamanho da Partícula , Poluentes do Solo/análise , beta-Galactosidase/metabolismo
6.
Environ Sci Pollut Res Int ; 20(9): 6392-405, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23589262

RESUMO

A set of periurban calcareous agricultural Mediterranean soils was spiked with a mixture of Cd, Cu, Pb and Zn at two levels within the limit values proposed by current European legislation, incubated for up to 12 months, and subjected to various one-step extraction procedures to estimate mobile (neutral salts) and potentially mobile metal fractions (complexing and acidic extraction methods). The results obtained were used to study metal extractability patterns according to the soil characteristics. The analytical data were coupled with mineralogical investigations and speciation modelling using the Visual Minteq model. The formation of soluble metal-complexes in the complexing extracts (predicted by the Visual Minteq calculations) led to the highest extraction efficiency with complexing extractants. Metal extractability patterns were related to both content and composition of carbonate, organic matter, Fe oxide and clay fractions. Potentially mobile metal fractions were mainly affected by the finest soil fractions (recalcitrant organic matter, active lime and clay minerals). In the case of Pb, scarce correlations between extractable Pb and soil constituents were obtained which was attributed to high Pb retention due to the formation of 4PbCO3·3PbO (corroborated by X-ray diffraction). In summary, the high metal proportion extracted with complexing agents highlighted the high but finite capacity to store potentially mobilizable metals and the possible vulnerability of these soils against environmental impact from metal accumulation.


Assuntos
Metais/química , Poluentes do Solo/química , Solo/química , Agricultura , Região do Mediterrâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA