Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 43(20): 7964-70, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19921921

RESUMO

The present investigation, carried out as a case study in a typical major city situated in a European coal combustion region (Krakow, Poland), aims at quantifying the impact on the urban air quality of residential heating by coal combustion in comparison with other potential pollution sources such as power plants, industry, and traffic. Emissions were measured for 20 major sources, including small stoves and boilers, and the particulate matter (PM) was analyzed for 52 individual compounds together with outdoor and indoor PM10 collected during typical winter pollution episodes. The data were analyzed using chemical mass balance modeling (CMB) and constrained positive matrix factorization (CMF) yielding source apportionments for PM10, B(a)P, and other regulated air pollutants namely Cd, Ni, As, and Pb. The results are potentially very useful for planning abatement strategies in all areas of the world, where coal combustion in small appliances is significant. During the studied pollution episodes in Krakow, European air quality limits were exceeded with up to a factor 8 for PM10 and up to a factor 200 for B(a)P. The levels of these air pollutants were accompanied by high concentrations of azaarenes, known markers for inefficient coal combustion. The major culprit for the extreme pollution levels was demonstrated to be residential heating by coal combustion in small stoves and boilers (>50% for PM10 and >90% B(a)P), whereas road transport (<10% for PM10 and <3% for B(a)P), and industry (4-15% for PM10 and <6% for B(a)P) played a lesser role. The indoor PM10 and B(a)P concentrations were at high levels similar to those of outdoor concentrations and were found to have the same sources as outdoors. The inorganic secondary aerosol component of PM10 amounted to around 30%, which for a large part may be attributed to the industrial emission of the precursors SO2 and NOx.


Assuntos
Poluentes Atmosféricos/análise , Arsênio/análise , Calefação/efeitos adversos , Metais Pesados/análise , Material Particulado/análise , Poluição do Ar/análise , Carvão Mineral , Habitação , Polônia , Urbanização
2.
J Environ Monit ; 5(4): 529-40, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12948223

RESUMO

Hereafter, an assessment of the ability of the chemiluminescence method to measure ambient NO2 with an accuracy within 15%, as requested by the data quality objective of European directive 1999/30/CE, is presented. In general, uncertainty is evaluated using the response to reference materials or by means of inter-comparisons used to determine some statistics like repeatability, reproducibility and calibration bias. These are incomplete approaches and the method of the Guide to the Expression of Uncertainty in Measurement, advised by the Directive, should be preferred. In fact, even if it requires a large data set, it allows the relative influence of all possible sources of uncertainty to be studied. The extent of NO2 uncertainty is mainly dependent on the level of NO. It is decreased by NOx and the correlation between NOx and NO. Furthermore, the uncertainty budget reveals that the contribution of accuracy of calibration standard, linearity, converter efficiency and drift of the analyser between calibration checks to the overall uncertainty is less important than the contribution of interference, mainly humidity and PAN in rural areas. The relative expanded uncertainty of the NO2 hourly average exceeds 30% for NO2 concentrations lower than 40 microg m(-3). Nevertheless, the data quality objective of 15% is reached for 200 microg m(-3), the hourly limit value of the European directive. On the contrary, at the limit value on the annual average, 40 microg m(-3), the data quality objective is not met if NO is higher than 100 microg m(-3). However, the data quality objective could be reached by correcting the measurements with the bias due to interference.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Fidelidade a Diretrizes , Dióxido de Nitrogênio/análise , Oxidantes Fotoquímicos/análise , Europa (Continente) , Medições Luminescentes , Controle de Qualidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA