Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Circ Res ; 133(6): 508-531, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37589160

RESUMO

BACKGROUND: Hypoxia is a major cause and promoter of pulmonary hypertension (PH), a representative vascular remodeling disease with poor prognosis and high mortality. However, the mechanism underlying how pulmonary arterial system responds to hypoxic stress during PH remains unclear. Endothelial mitochondria are considered signaling organelles on oxygen tension. Results from previous clinical research and our studies suggested a potential role of posttranslational SUMOylation (small ubiquitin-like modifier modification) in endothelial mitochondria in hypoxia-related vasculopathy. METHODS: Chronic hypoxia mouse model and Sugen/hypoxia rat model were employed as PH animal models. Mitochondrial morphology and subcellular structure were determined by transmission electron and immunofluorescent microscopies. Mitochondrial metabolism was determined by mitochondrial oxygen consumption rate and extracellular acidification rate. SUMOylation and protein interaction were determined by immunoprecipitation. RESULTS: The involvement of SENP1 (sentrin-specific protease 1)-mediated SUMOylation in mitochondrial remodeling in the pulmonary endothelium was identified in clinical specimens of hypoxia-related PH and was verified in human pulmonary artery endothelial cells under hypoxia. Further analyses in clinical specimens, hypoxic rat and mouse PH models, and human pulmonary artery endothelial cells and human embryonic stem cell-derived endothelial cells revealed that short-term hypoxia-induced SENP1 translocation to endothelial mitochondria to regulate deSUMOylation (the reversible process of SUMOylation) of mitochondrial fission protein FIS1 (mitochondrial fission 1), which facilitated FIS1 assembling with fusion protein MFN2 (mitofusin 2) and mitochondrial gatekeeper VDAC1 (voltage-dependent anion channel 1), and the membrane tethering activity of MFN2 by enhancing its oligomerization. Consequently, FIS1 deSUMOylation maintained the mitochondrial integrity and endoplasmic reticulum-mitochondria calcium communication across mitochondrial-associated membranes, subsequently preserving pulmonary endothelial function and vascular homeostasis. In contrast, prolonged hypoxia disabled the FIS1 deSUMOylation by diminishing the availability of SENP1 in mitochondria via inducing miR (micro RNA)-138 and consequently resulted in mitochondrial dysfunction and metabolic reprogramming in pulmonary endothelium. Functionally, introduction of viral-packaged deSUMOylated FIS1 within pulmonary endothelium in mice improved pulmonary endothelial dysfunction and hypoxic PH development, while knock-in of SUMO (small ubiquitin-like modifier)-conjugated FIS1 in mice exaggerated the diseased cellular and tissue phenotypes. CONCLUSIONS: By maintaining endothelial mitochondrial homeostasis, deSUMOylation of FIS1 adaptively preserves pulmonary endothelial function against hypoxic stress and consequently protects against PH. The FIS1 deSUMOylation-SUMOylation transition in pulmonary endothelium is an intrinsic pathogenesis of hypoxic PH.


Assuntos
Hipertensão Pulmonar , Doenças Vasculares , Humanos , Camundongos , Ratos , Animais , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/prevenção & controle , Células Endoteliais , Mitocôndrias , Modelos Animais de Doenças , Endotélio , Ubiquitinas , Proteínas de Membrana , Proteínas Mitocondriais
2.
Proc Natl Acad Sci U S A ; 119(45): e2207067119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36763058

RESUMO

The cardiac KCNQ1 potassium channel carries the important IKs current and controls the heart rhythm. Hundreds of mutations in KCNQ1 can cause life-threatening cardiac arrhythmia. Although KCNQ1 structures have been recently resolved, the structural basis for the dynamic electro-mechanical coupling, also known as the voltage sensor domain-pore domain (VSD-PD) coupling, remains largely unknown. In this study, utilizing two VSD-PD coupling enhancers, namely, the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and a small-molecule ML277, we determined 2.5-3.5 Å resolution cryo-electron microscopy structures of full-length human KCNQ1-calmodulin (CaM) complex in the apo closed, ML277-bound open, and ML277-PIP2-bound open states. ML277 binds at the "elbow" pocket above the S4-S5 linker and directly induces an upward movement of the S4-S5 linker and the opening of the activation gate without affecting the C-terminal domain (CTD) of KCNQ1. PIP2 binds at the cleft between the VSD and the PD and brings a large structural rearrangement of the CTD together with the CaM to activate the PD. These findings not only elucidate the structural basis for the dynamic VSD-PD coupling process during KCNQ1 gating but also pave the way to develop new therapeutics for anti-arrhythmia.


Assuntos
Coração , Canal de Potássio KCNQ1 , Humanos , Canal de Potássio KCNQ1/metabolismo , Microscopia Crioeletrônica , Piperidinas
3.
Proc Natl Acad Sci U S A ; 119(26): e2202631119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733256

RESUMO

Angiogenesis contributes fundamentally to embryonic development, tissue homeostasis, and wound healing. Basic fibroblast growth factor (FGF2) is recognized as the first proangiogenic molecule discovered, and it facilitates angiogenesis by activating FGF receptor 1 (FGFR1) signaling in endothelial cells. However, the precise roles of FGFR and the FGF/FGFR signaling axis in angiogenesis remain unclear, especially because of the contradictory phenotypes of in vivo FGF and FGFR gene deficiency models. Our previous study results suggested a potential role of posttranslational small ubiquitin-like modifier modification (SUMOylation), with highly dynamic regulatory features, in vascular development and disorder. Here, we identified SENP1-regulated endothelial FGFR1 SUMOylation at conserved lysines responding to proangiogenic stimuli, while SENP1 functioned as the deSUMOylase. Hypoxia-enhanced FGFR1 SUMOylation restricted the tyrosine kinase activation of FGFR1 by modulating the dimerization of FGFR1 and FGFR1 binding with its phosphatase PTPRG. Consequently, it facilitated the recruitment of FRS2α to VEGFR2 but limited additional recruitment of FRS2α to FGFR1, supporting the activation of VEGFA/VEGFR2 signaling in endothelial cells. Furthermore, SUMOylation-defective mutation of FGFR1 resulted in exaggerated FGF2/FGFR1 signaling but suppressed VEGFA/VEGFR2 signaling and the angiogenic capabilities of endothelial cells, which were rescued by FRS2α overexpression. Reduced angiogenesis and endothelial sprouting in mice bearing an endothelial-specific, FGFR1 SUMOylation-defective mutant confirmed the functional significance of endothelial FGFR1 SUMOylation in vivo. Our findings identify the reversible SUMOylation of FGFR1 as an intrinsic fine-tuned mechanism in coordinating endothelial angiogenic signaling during neovascularization; SENP1-regulated FGFR1 SUMOylation and deSUMOylation controls the competitive recruitment of FRS2α by FGFR1 and VEGFR2 to switch receptor-complex formation responding to hypoxia and normoxia angiogenic environments.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Sumoilação , Animais , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Sumoilação/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Cell Mol Life Sci ; 80(7): 184, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340199

RESUMO

Macrophage activation has been shown to play an essential role in renal fibrosis and dysfunction in hypertensive chronic kidney disease. Dectin-1 is a pattern recognition receptor that is also involved in chronic noninfectious diseases through immune activation. However, the role of Dectin-1 in Ang II-induced renal failure is still unknown. In this study, we found that Dectin-1 expression on CD68 + macrophages was significantly elevated in the kidney after Ang II infusion. We assessed the effect of Dectin-1 on hypertensive renal injury using Dectin-1-deficient mice infused by Angiotensin II (Ang II) at 1000 ng/kg/min for 4 weeks. Ang II-induced renal dysfunction, interstitial fibrosis, and immune activation were significantly attenuated in Dectin-1-deficient mice. A Dectin-1 neutralizing antibody and Syk inhibitor (R406) were used to examine the effect and mechanism of Dectin-1/Syk signaling axle on cytokine secretion and renal fibrosis in culturing cells. Blocking Dectin-1 or inhibiting Syk significantly reduced the expression and secretion of chemokines in RAW264.7 macrophages. The in vitro data showed that the increase in TGF-ß1 in macrophages enhanced the binding of P65 and its target promotor via the Ang II-induced Dectin-1/Syk pathway. Secreted TGF-ß1 caused renal fibrosis in kidney cells through Smad3 activation. Thus, macrophage Dectin-1 may be involved in the activation of neutrophil migration and TGF-ß1 secretion, thereby promoting kidney fibrosis and dysfunction.


Assuntos
Angiotensina II , Hipertensão Renal , Camundongos , Animais , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Neutrófilos/metabolismo , Rim/metabolismo , Hipertensão Renal/metabolismo , Hipertensão Renal/patologia , Macrófagos/metabolismo , Fibrose
5.
FASEB J ; 34(5): 6271-6283, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32162409

RESUMO

Vascular smooth muscle cells (VSMCs) in the normal arterial media continually express contractile phenotypic markers which are reduced dramatically in response to injury. Tripartite motif-containing proteins are a family of scaffold proteins shown to regulate gene silencing, cell growth, and differentiation. We here investigated the biological role of tripartite motif-containing 28 (TRIM28) and tripartite motif-containing 27 (TRIM27) in VSMCs. We observed that siRNA-mediated knockdown of TRIM28 and TRIM27 inhibited platelet-derived growth factor (PDGF)-induced migration in human VSMCs. Both TRIM28 and TRIM27 can regulate serum response element activity and were required for maintaining the contractile gene expression in human VSMCs. At the same time, TRIM28 and TRIM27 knockdown reduced the expression of PDGF receptor-ß (PDGFRß) and the phosphorylation of its downstream signaling components. Immunoprecipitation showed that TRIM28 formed complexes with TRIM27 through its N-terminal RING-B boxes-Coiled-Coil domain. Furthermore, TRIM28 and TRIM27 were shown to be upregulated and mediate the VSMC contractile marker gene and PDGFRß expression in differentiating human bone marrow mesenchymal stem cells. In conclusion, we identified that TRIM28 and TRIM27 cooperatively maintain the endogenous expression of PDGFRß and contractile phenotype of human VSMCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Contração Muscular , Músculo Liso Vascular/fisiologia , Proteínas Nucleares/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Músculo Liso Vascular/citologia , Proteínas Nucleares/genética , Fenótipo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Elemento de Resposta Sérica , Transdução de Sinais , Proteína 28 com Motivo Tripartido/genética
6.
J Mol Cell Cardiol ; 80: 166-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25636197

RESUMO

Statins have beneficial pleiotropic effects beyond lipid lowering on the cardiovascular system. These cardio-protective effects are mediated through inhibition of the intracellular mevalonate pathway, by decreasing isoprenoid intermediate synthesis and the subsequent post-translational modification of small GTPases, such as Ras, Rho, and Rac. Impaired intracellular calcium handling is considered an important pathophysiologic mechanism responsible for cardiac dysfunction. Our study aimed at investigating the influence of mevalonate pathway, including its downstream small GTPases (Ras, RhoA, and Rac1) on anoxia-mediated alterations of calcium handling in H9c2 cardiomyocytes. Cultured H9c2 cardiomyocytes were exposed to acute anoxia after pretreatment with different drugs that specifically antagonize five key components in the mevalonate pathway, including 3-hydroxy-3-methylglutaryl-CoA reductase, farnesyl pyrophosphate synthase, Rho-kinase, Rac1 and Ras farnesyltransferase. Thereafter, we evaluated the effects of the mevalonate pathway on anoxia-induced cell death, expression of the sarcoplasmic reticulum calcium release channel (ryanodine receptor 2) and its regulator FK506-binding protein 12.6, as well as functional calcium release from intracellular calcium stores. Our experiments confirmed the role of prenylated proteins in regulating cardiomyocyte dysfunction, especially via RhoA- and Ras-related signaling pathways. Furthermore, our data demonstrated that inhibition of the mevalonate pathway could ameliorate anoxia-mediated calcium handling dysfunction with the up-regulated expression of FK506-binding protein 12.6 and consequently provided evidence for FK506-binding protein 12.6 as a "stabilizer" of ryanodine receptor 2.


Assuntos
Cálcio/metabolismo , Hipóxia/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Ácido Mevalônico/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipóxia/genética , Espaço Intracelular/metabolismo , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Proteínas de Ligação a Tacrolimo/genética
7.
J Cardiovasc Electrophysiol ; 24(4): 457-63, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23279377

RESUMO

BACKGROUND: CaMKII activation is proarrhythmic in heart failure where myocardium is stretched. However, the arrhythmogenic role of CaMKII in stretched ventricle has not been well understood. OBJECTIVE: We tested abnormal impulse inducibility by stretch current in myocytes isolated from CaMKIIδ knockout (KO) mouse left ventricle (LV) where CaMKII activity is reduced by ≈ 62%. METHODS AND RESULTS: Action potentials were recorded by whole-cell patch clamp, and abnormal impulses were induced in LV myocytes by a simulation of stretch-activated channel (SAC) current. SAC activation failed to induce abnormal impulses in wild type (WT) myocytes but steadily produced early after-depolarizations and automaticity in KO myocytes in which an increase in L-type calcium channel (LTCC) current (I(Ca)) and a reduction of sarcoplasmic reticulum Ca(2+) leak and action potential duration (APD) were observed. The abnormal impulses were not suppressed by CaMKII inhibitor AIP whereas a low concentration of nifedipine eliminated abnormal impulses without shortening APD, implicating I(Ca) in promoting stretch-induced abnormal impulses. In addition, APD prolongation by LTCC opener S(-)Bay K 8644 or isoproterenol facilitated abnormal impulse induction in WT ventricular myocytes even in the presence of CaMKII inhibitor AIP, whereas APD prolongation by K(+) channel blocker 4-aminopyridine promoted abnormal impulses in KO myocytes but not in WT myocytes. CONCLUSION: I(Ca) activation plays a central role in stretch-induced abnormal impulses and APD prolongation is arrhythmogenic only when I(Ca) is highly activated. At increased I(Ca) activation, CaMKII inhibition cannot suppress abnormal impulse induction.


Assuntos
Arritmias Cardíacas/enzimologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/deficiência , Ventrículos do Coração/enzimologia , Mecanorreceptores/metabolismo , Miócitos Cardíacos/enzimologia , Potenciais de Ação , Agonistas Adrenérgicos beta/farmacologia , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Ativação Enzimática , Potenciais Evocados , Ventrículos do Coração/efeitos dos fármacos , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Retículo Sarcoplasmático/metabolismo , Fatores de Tempo
8.
Biomater Res ; 27(1): 84, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667399

RESUMO

BACKGROUND: Bioresorbable stents are designed to provide temporary mechanical support to the coronary arteries and then slowly degrade in vivo to avoid chronic inflammation. Zinc (Zn) is a promising material for bioresorbable stents; However, it can cause inflammation and neointimal formation after being implanted into blood vessels. METHODS: To improve biocompatibility of Zn, we first coated it with polydopamine (PDA), followed by immobilization of endothelial vascular growth factor (VEGF) onto the PDA coatings. Adhesion, proliferation, and phenotype maintenance of endothelial cells (ECs) on the coated Zn were evaluated in vitro. Then, a wire aortic implantation model in rats mimicking endovascular stent implantation in humans was used to assess vascular responses to the coated Zn wires in vivo. Thrombosis in aortas post Zn wire implantation, degradation of Zn wires in vivo, neointimal formation surrounding Zn wires, and macrophage infiltration and extracellular matrix (ECM) remodeling in the neointimas were examined. RESULTS: In vitro data showed that the PDA-coated Zn encouraged EC adhesion, spreading, proliferation, and phenotype maintenance on its surfaces. VEGF functionalization on PDA coatings further enhanced the biocompatibility of Zn to ECs. Implantation of PDA-coated Zn wires into rat aortas didn't cause thrombosis and showed a faster blood flow than pure Zn or the Zn wires coated with VEGF alone. In addition, the PDA coating didn't affect the degradation of Zn wires in vivo. Besides, the PDA-coated Zn wires reduced neointimal formation, increased EC coverage, decreased macrophage infiltration, and declined aggrecan accumulation in ECM. VEGF immobilization onto PDA coatings didn't cause thrombosis and affect Zn degradation in vivo as well, and further increased the endothelization percentage as compared to PDA coating alone, thus resulting in thinner neointimas. CONCLUSION: These results indicate that PDA coatings with VEGF immobilization would be a promising approach to functionalize Zn surfaces to increase biocompatibility, reduce inflammation, and inhibit neointimal formation after Zn implantation in vivo.

9.
Am J Physiol Heart Circ Physiol ; 302(7): H1454-65, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22287581

RESUMO

Calmodulin-dependent protein kinase II (CaMKII) has been proposed to be a therapeutic target for heart failure (HF). However, the cardiac effect of chronic CaMKII inhibition in HF has not been well understood. We have tested alterations of Ca(2+) handling, excitation-contraction coupling, and in vivo ß-adrenergic regulation in pressure-overload HF mice with CaMKIIδ knockout (KO). HF was produced in wild-type (WT) and KO mice 1 wk after severe thoracic aortic banding (sTAB) with a continuous left ventricle (LV) dilation and reduction of ejection fraction for up to 3 wk postbanding. Cardiac hypertrophy was similar between WT HF and KO HF mice. However, KO HF mice manifested exacerbation of diastolic function and reduction in cardiac reserve to ß-adrenergic stimulation. Compared with WT HF, L-type calcium channel current (I(Ca)) density in KO HF LV was decreased without changes in I(Ca) activation and inactivation kinetics, whereas I(Ca) recovery from inactivation was accelerated and Ca(2+)-dependent I(Ca) facilitation, a positive staircase blunted in WT HF, was recovered. However, I(Ca) response to isoproterenol was reduced. KO HF myocytes manifested dramatic decrease in sarcoplasmic reticulum (SR) Ca(2+) leak and slowed cytostolic Ca(2+) concentration decline. Sarcomere shortening was increased, but relaxation was slowed. In addition, an increase in myofilament sensitivity to Ca(2+) and the slow skeletal muscle troponin I-to-cardiac troponin I ratio and interstitial fibrosis and a decrease in Na/Ca exchange function and myocyte apoptosis were observed in KO HF LV. CaMKIIδ KO cannot suppress severe pressure-overload-induced HF. Although cellular contractility is improved, it reduces in vivo cardiac reserve to ß-adrenergic regulation and deteriorates diastolic function. Our findings challenge the strategy of CaMKII inhibition in HF.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Insuficiência Cardíaca/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Agonistas Adrenérgicos beta/farmacologia , Animais , Aorta Torácica/fisiologia , Apoptose/efeitos dos fármacos , Western Blotting , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Citosol/efeitos dos fármacos , Citosol/metabolismo , Fibrose/patologia , Insuficiência Cardíaca/diagnóstico por imagem , Ventrículos do Coração/efeitos dos fármacos , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Contração Miocárdica/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Miofibrilas/fisiologia , Inibidores de Proteínas Quinases/toxicidade , Receptores Adrenérgicos beta/efeitos dos fármacos , Receptores Adrenérgicos beta/fisiologia , Sarcômeros/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/metabolismo , Ultrassonografia
10.
Circ Res ; 107(3): 398-407, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20538682

RESUMO

RATIONALE: Recent studies have highlighted important roles of CaMKII in regulating Ca(2+) handling and excitation-contraction coupling. However, the cardiac effect of chronic CaMKII inhibition has not been well understood. OBJECTIVE: We have tested the alterations of L-type calcium current (I(Ca)) and cardiac function in CaMKIIdelta knockout (KO) mouse left ventricle (LV). METHODS AND RESULTS: We used the patch-clamp method to record I(Ca) in ventricular myocytes and found that in KO LV, basal I(Ca) was significantly increased without changing the transmural gradient of I(Ca) distribution. Substitution of Ba(2+) for Ca(2+) showed similar increase in I(Ba). There was no change in the voltage dependence of I(Ca) activation and inactivation. I(Ca) recovery from inactivation, however, was significantly slowed. In KO LV, the Ca(2+)-dependent I(Ca) facilitation (CDF) and I(Ca) response to isoproterenol (ISO) were significantly reduced. However, ISO response was reversed by beta2-adrenergic receptor (AR) inhibition. Western blots showed a decrease in beta1-AR and an increase in Ca(v)1.2, beta2-AR, and Galphai3 protein levels. Ca(2+) transient and sarcomere shortening in KO myocytes were unchanged at 1-Hz but reduced at 3-Hz stimulation. Echocardiography in conscious mice revealed an increased basal contractility in KO mice. However, cardiac reserve to work load and beta-adrenergic stimulation was reduced. Surprisingly, KO mice showed a reduced heart rate in response to work load or beta-adrenergic stimulation. CONCLUSIONS: Our results implicate physiological CaMKII activity in maintaining normal I(Ca), Ca(2+) handling, excitation-contraction coupling, and the in vivo heart function in response to cardiac stress.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/deficiência , Coração/fisiologia , Função Ventricular Esquerda/fisiologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Animais , Western Blotting , Peso Corporal , Cálcio/fisiologia , Coração/anatomia & histologia , Isoproterenol/farmacologia , Cinética , Camundongos , Camundongos Knockout , Células Musculares/efeitos dos fármacos , Células Musculares/fisiologia , Contração Miocárdica/fisiologia , Tamanho do Órgão , Disfunção Ventricular Esquerda/genética , Função Ventricular Esquerda/efeitos dos fármacos
11.
Eur Heart J ; 32(3): 305-15, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21148163

RESUMO

AIMS: Reduction of transient outward current (I(to)) and excessive activation of Ca(2+)/Calmodulin-dependent kinase II (CaMKII) are general features of ventricular myocytes in heart failure. We hypothesize that alterations of I(to) directly regulate CaMKII activation in cardiomyocytes. METHODS AND RESULTS: A dynamic coupling of I(to) channel subunit Kv4.3 and inactive CaMKII was discovered in cardiomyocytes with the membrane predominant distribution by co-immunoprecipitation and fluorescence resonance energy transfer techniques. CaMKII dissociation from Kv4.3-CaMKII units caused a significant increase in CaMKII autophosphorylation and L-type calcium current (I(Ca)) facilitation. I(Ca) facilitation was blunted by the compartmental Ca²(+) chelator BAPTA but unaffected by bulk Ca²(+) chelator EGTA, implicating membrane-localized CaMKII. Kv4.3 overexpression reduced basal CaMKII autophosphorylation in myocytes and eliminated Ca²(+)-induced CaMKII activation. Kv4.3 blocks CaMKII activation by binding to the calmodulin binding sites, whereas Kv4.3 uncoupling releases these sites and leads to a substantial CaMKII activation. CONCLUSION: Our results uncovered an important mechanism that regulates CaMKII activation in the heart and implicate I(to) channel alteration in pathological CaMKII activation.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Miócitos Cardíacos/metabolismo , Canais de Potássio Shal/fisiologia , 4-Aminopiridina/farmacologia , Animais , Cálcio/metabolismo , Quelantes/farmacologia , Ácido Edético/farmacologia , Ácido Egtázico/farmacologia , Células HEK293 , Cardiopatias/etiologia , Cardiopatias/prevenção & controle , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Canais de Potássio Shal/metabolismo
12.
Front Cardiovasc Med ; 9: 868749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479285

RESUMO

Background: Heart failure (HF), primarily caused by conditions such as coronary heart disease or cardiomyopathy, is a global health problem with poor prognosis and heavy burden on healthcare systems. As biomarkers of myocardial injury and fibrosis, suppression of tumorigenicity 2 (ST2) and galectin-3 were recommended for prognosis stratification in HF guidelines. However, the causality between these two mediators and HF remains obscure. This study aimed to explore the causal relationship of genetically determined ST2 and galectin-3 with the risk of HF. Methods: We used the two-sample Mendelian randomization (MR) method, incorporating available genome-wide association summary statistics, to investigate the causal association of ST2 and galectin-3 with HF risk. We applied inverse-variance weighted analysis as the main method of analysis. Results: In our final MR analysis, 4 single-nucleotide polymorphisms (SNPs) of ST2 and galectin-3, respectively, were identified as valid instrumental variables. Fixed-effect inverse variance weighted (IVW) analysis indicated that genetically predicted ST2 and galectin-3 were not causally associated with HF risk 3. [odds ratio (OR) = 0.9999, 95% confidence interval [CI] = 0.9994-1.0004, p = 0.73; OR = 1.0002, 95% CI = 0.9994-1.0010, p = 0.60, respectively]. These findings were robust in sensitivity analyses, including MR-Egger regression and leave-one-out analysis. Conclusion: This MR study provided no evidence for the causal effects of ST2 and galectin-3 on HF risk.

13.
Front Med (Lausanne) ; 9: 839856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360720

RESUMO

Background: Identifying high-risk patients for contrast-associated acute kidney injury (CA-AKI) helps to take early preventive interventions. The current study aimed to establish and validate an online pre-procedural nomogram for CA-AKI in patients undergoing coronary angiography (CAG). Methods: In this retrospective dataset, 4,295 patients undergoing CAG were enrolled and randomized into the training or testing dataset with a split ratio of 8:2. Optimal predictors for CA-AKI were determined by Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest (RF) algorithm. Nomogram was developed and deployed online. The discrimination and accuracy of the nomogram were evaluated by receiver operating characteristic (ROC) and calibration analysis, respectively. Clinical usefulness was estimated by decision curve analysis (DCA) and clinical impact curve (CIC). Results: A total of 755 patients (17.1%) was diagnosed with CA-AKI. 7 pre-procedural predictors were identified and integrated into the nomogram, including age, gender, hemoglobin, N-terminal of the prohormone brain natriuretic peptide, neutrophil-to-lymphocyte ratio, cardiac troponin I, and loop diuretics use. The ROC analyses showed that the nomogram had a good discrimination performance for CA-AKI in the training dataset (area under the curve, AUC = 0.766, 95%CI [0.737 to 0.794]) and testing dataset (AUC = 0.737, 95%CI [0.693 to 0.780]). The nomogram was also well-calibrated in both the training dataset (P = 0.965) and the testing dataset (P = 0.789). Good clinical usefulness was identified by DCA and CIC. Finally, this model was deployed in a web server for public use (https://duanbin-li.shinyapps.io/DynNomapp/). Conclusion: An easy-to-use pre-procedural nomogram for predicting CA-AKI was established and validated in patients undergoing CAG, which was also deployed online.

14.
Cell Death Dis ; 13(4): 296, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35368021

RESUMO

Aging is a major risk for developing cardiac and skeletal muscle dysfunction, yet the underlying mechanism remains elusive. Here we demonstrated that the mitochondria-associated endoplasmic reticulum membranes (MAMs) in the rat heart and skeletal muscle were disrupted during aging. Using quantitative morphological analysis, we showed that the mitochondria-endoplasmic reticulum contacts (MERCs) were reduced by half over the lifespan with an early onset of accelerated thickening in the clefts. The ultrastructural changes were further validated by proteomic profiling of the MAM fractions. A combination of subcellular fractionation and quantitative mass spectrometry identified 1306 MAM-enriched proteins in both heart and skeletal muscle, with a catalog of proteins dysregulated with aging. Functional mapping of the MAM proteome suggested several aging signatures to be closely associated with the ER-mitochondria crosstalk, including local metabolic rewiring, calcium homeostasis imbalance, and impaired organelle dynamics and autophagy. Moreover, we identified a subset of highly interconnected proteins in an ER-mitochondria organization network, which were consistently down-regulated with aging. These decreased proteins, including VDAC1, SAMM50, MTX1 and MIC60, were considered as potential contributors to the age-related MAM dysfunction. This study highlights the perturbation in MAM integrity during the striated muscle aging process, and provides a framework for understanding aging biology from the perspective of organelle interactions.


Assuntos
Retículo Endoplasmático , Proteômica , Envelhecimento , Animais , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Ratos
15.
Nutrients ; 14(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014764

RESUMO

Although observational studies have shown that abnormal systemic iron status is associated with an increased risk of heart failure (HF), it remains unclear whether this relationship represents true causality. We aimed to explore the causal relationship between iron status and HF risk. Two-sample Mendelian randomisation (MR) was applied to obtain a causal estimate. Genetic summary statistical data for the associations (p < 5 × 10−8) between single nucleotide polymorphisms (SNPs) and four iron status parameters were obtained from the Genetics of Iron Status Consortium in genome-wide association studies involving 48,972 subjects. Statistical data on the association of SNPs with HF were extracted from the UK biobank consortium (including 1088 HF cases and 360,106 controls). The results were further tested using MR based on the Bayesian model averaging (MR-BMA) and multivariate MR (MVMR). Of the twelve SNPs considered to be valid instrumental variables, three SNPs (rs1800562, rs855791, and rs1799945) were associated with all four iron biomarkers. Genetically predicted iron status biomarkers were not causally associated with HF risk (all p > 0.05). Sensitivity analysis did not show evidence of potential heterogeneity and horizontal pleiotropy. Convincing evidence to support a causal relationship between iron status and HF risk was not found. The strong relationship between abnormal iron status and HF risk may be explained by an indirect mechanism.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Cardíaca , Teorema de Bayes , Biomarcadores , Estudo de Associação Genômica Ampla/métodos , Insuficiência Cardíaca/genética , Humanos , Ferro , Análise da Randomização Mendeliana/métodos
16.
Front Cardiovasc Med ; 9: 764629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647052

RESUMO

Background: Early prediction and classification of prognosis is essential for patients in the coronary care unit (CCU). We applied a machine learning (ML) model using the eXtreme Gradient Boosting (XGBoost) algorithm to prognosticate CCU patients and compared XGBoost with traditional classification models. Methods: CCU patients' data were extracted from the MIMIC-III v1.4 clinical database, and divided into four groups based on the time to death: <30 days, 30 days-1 year, 1-5 years, and ≥5 years. Four classification models, including XGBoost, naïve Bayes (NB), logistic regression (LR), and support vector machine (SVM) were constructed using the Python software. These four models were tested and compared for accuracy, F1 score, Matthews correlation coefficient (MCC), and area under the curve (AUC) of the receiver operating characteristic curves. Subsequently, Local Interpretable Model-Agnostic Explanations method was performed to improve XGBoost model interpretability. We also constructed sub-models of each model based on the different categories of death time and compared the differences by decision curve analysis. The optimal model was further analyzed using a clinical impact curve. At last, feature ablation curves of the XGBoost model were conducted to obtain the simplified model. Results: Overall, 5360 CCU patients were included. Compared to NB, LR, and SVM, the XGBoost model showed better accuracy (0.663, 0.605, 0.632, and 0.622), micro-AUCs (0.873, 0.811, 0.841, and 0.818), and MCC (0.337, 0.317, 0.250, and 0.182). In subgroup analysis, the XGBoost model had a better predictive performance in acute myocardial infarction subgroup. The decision curve and clinical impact curve analyses verified the clinical utility of the XGBoost model for different categories of patients. Finally, we obtained a simplified model with thirty features. Conclusions: For CCU physicians, the ML technique by XGBoost is a potential predictive tool in patients with different conditions, and it may contribute to improvements in prognosis.

17.
Life Sci ; 278: 119511, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864818

RESUMO

Effective Ca2+ dependent mitochondrial energy supply is imperative for proper cardiac contractile activity, while disruption of Ca2+ homeostasis participates in the pathogenesis of multiple human diseases. This phenomenon is particularly prominent in cardiac ischemia and reperfusion (I/R) and heart failure, both of which require strict clinical intervention. The interface between endoplasmic reticula (ER) and mitochondria, designated the mitochondria-associated membrane (MAM), is now regarded as a crucial mediator of Ca2+ transportation. Thus, interventions targeting this physical and functional coupling between mitochondria and the ER are highly desirable. Increasing evidence supports the notion that restoration, and maintenance, of the physiological contact between these two organelles can improve mitochondrial function, while inhibiting cell death, thereby sufficiently ameliorating I/R injury and heart failure development. A better understanding regarding the underlying mechanism of MAM-mediated transport will pave the way for identification of novel treatment approaches for heart disease. Therefore, in this review, we summarize the crucial functions and potential mechanisms of MAMs in the pathogenesis of I/R and heart failure.


Assuntos
Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias/metabolismo , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Homeostase , Humanos , Camundongos , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Resultado do Tratamento
18.
Cell Res ; 31(1): 52-61, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32884139

RESUMO

The voltage-gated potassium channel KCNQ2 is responsible for M-current in neurons and is an important drug target to treat epilepsy, pain and several other diseases related to neuronal hyper-excitability. A list of synthetic compounds have been developed to directly activate KCNQ2, yet our knowledge of their activation mechanism is limited, due to lack of high-resolution structures. Here, we report cryo-electron microscopy (cryo-EM) structures of the human KCNQ2 determined in apo state and in complex with two activators, ztz240 or retigabine, which activate KCNQ2 through different mechanisms. The activator-bound structures, along with electrophysiology analysis, reveal that ztz240 binds at the voltage-sensing domain and directly stabilizes it at the activated state, whereas retigabine binds at the pore domain and activates the channel by an allosteric modulation. By accurately defining ligand-binding sites, these KCNQ2 structures not only reveal different ligand recognition and activation mechanisms, but also provide a structural basis for drug optimization and design.


Assuntos
Canal de Potássio KCNQ2/metabolismo , Ligantes , Potenciais de Ação/efeitos dos fármacos , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacologia , Sítios de Ligação , Carbamatos/química , Carbamatos/metabolismo , Carbamatos/farmacologia , Microscopia Crioeletrônica , Humanos , Canal de Potássio KCNQ2/agonistas , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ2/genética , Simulação de Dinâmica Molecular , Mutagênese , Fenilenodiaminas/química , Fenilenodiaminas/metabolismo , Fenilenodiaminas/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacologia
19.
Pharmgenomics Pers Med ; 14: 823-837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285551

RESUMO

BACKGROUND: Considered as one of the major reasons of sudden cardiac death, hypertrophic cardiomyopathy (HCM) is a common inherited cardiovascular disease. However, effective treatment for HCM is still lacking. Identification of hub gene may be a powerful tool for discovering potential therapeutic targets and candidate biomarkers. METHODS: We analysed three gene expression datasets for HCM from the Gene Expression Omnibus. Two of them were merged by "sva" package. The merged dataset was used for analysis while the other dataset was used for validation. Following this, a weighted gene coexpression network analysis (WGCNA) was performed, and the key module most related to HCM was identified. Based on the intramodular connectivity, we identified the potential hub genes. Then, a receiver operating characteristic curve analysis was performed to verify the diagnostic values of hub genes. Finally, we validated changes of hub genes, for genetic transcription and protein expression levels, in datasets of HCM patients and myocardium of transverse aortic constriction (TAC) mice. RESULTS: In the merged dataset, a total of 455 differentially expressed genes (DEGs) were identified from normal and hypertrophic myocardium. In WGCNA, the blue module was identified as the key module and the genes in this module showed a high positive correlation with HCM. Functional enrichment analysis of DEGs and key module revealed that the extracellular matrix, fibrosis, and neurohormone pathways played important roles in HCM. FRZB, COL14A1, CRISPLD1, LUM, and sFRP4 were identified as hub genes in the key module. These genes showed a good predictive value for HCM and were significantly up-regulated in HCM patients and TAC mice. We also found protein expression of LUM and sFRP4 increased in myocardium of TAC mice. CONCLUSION: This study revealed that five hub genes are involved in the occurrence and development of HCM, and they are potentially to be used as therapeutic targets and biomarkers for HCM.

20.
Front Cardiovasc Med ; 8: 758635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869672

RESUMO

Background: Ventricular arrhythmias are associated with sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM). Previous studies have found the late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR) was independently associated with ventricular arrhythmia (VA) in HCM. The risk stratification of VA remains complex and LGE is present in the majority of HCM patients. This study was conducted to determine whether the scar heterogeneity from LGE-derived entropy is associated with the VAs in HCM patients. Materials and Methods: Sixty-eight HCM patients with scarring were retrospectively enrolled and divided into VA (31 patients) and non-VA (37 patients) groups. The left ventricular ejection fraction (LVEF) and percentage of the LGE (% LGE) were evaluated. The scar heterogeneity was quantified by the entropy within the scar and left ventricular (LV) myocardium. Results: Multivariate analyses showed that a higher scar [hazard ratio (HR) 2.682; 95% CI: 1.022-7.037; p = 0.039] was independently associated with VA, after the adjustment for the LVEF, %LGE, LV maximal wall thickness (MWT), and left atrium (LA) diameter. Conclusion: Scar entropy and %LGE are both independent risk indicators of VA. A high scar entropy may indicate an arrhythmogenic scar, an identification of which may have value for the clinical status assessment of VAs in HCM patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA