Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
DNA Cell Biol ; 41(7): 683-690, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35687365

RESUMO

Ras homologue enriched in brain 1 (Rheb1), an upstream activator of the mechanistic target of rapamycin complex 1 (mTORC1), is known to modulate various cellular processes. However, its impact on bone metabolism in vivo remains unknown. The study aimed at understanding the role of Rheb1 on bone homeostasis. We measured the serum parameters and performed histomorphometry, quantitative real-time polymerase chain reaction, and Western blotting, along with the generation of mouse gene knockout (KO) model, and conducted a microcomputed tomography analysis and tartrate-resistant acid phosphatase staining, to delineate the impacts of Rheb1 on bone homeostasis. In the Rheb1 KO mice, the results showed that Rheb1 KO caused significant damage to the bone microarchitecture, indicating that mTORC1 activity was essential for the regulation of bone homeostasis. Specifically, suppressed mineralization activity in primary osteoblasts and a decreased osteoblast number were observed in the Rheb1 KO mice, demonstrating that loss of Rheb1 led to impaired osteoblastic differentiation. Furthermore, the higher apoptotic ratio in Rheb1-null osteocytes could promote Tnfsf11 expression and lead to an increase in osteoclasts, indicating increased bone resorption activity in the KO mice. The findings confirmed that Rheb1 deletion in osteoblasts/osteocytes led to osteopenia due to impaired bone formation and enhanced bone resorption.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Osteócitos , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Animais , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular , Deleção de Genes , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteócitos/metabolismo , Osteócitos/patologia , Osteogênese/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Microtomografia por Raio-X
2.
Biomed Pharmacother ; 154: 113566, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35994820

RESUMO

To identify therapeutic targets in acute myeloid leukemia (AML), we conducted growth inhibition screens of 2040 small molecules from a library of FDA-approved drugs using a panel of 12 AML cell lines. Tegaserod maleate, a 5-hydroxytryptamine 4 receptor partial agonist, elicits strong anti-AML effects in vitro and in vivo by targeting transient receptor potential melastatin subtype 8 (TRPM8), which plays critical roles in several important processes. However, the role of TRPM8 remains incompletely described in AML, whose treatment is based mostly on antimitotic chemotherapy. Here, we report an unexpected role of TRPM8 in leukemogenesis. Strikingly, TRPM8 knockout inhibits AML cell survival/proliferation by promoting apoptosis. Mechanistically, TRPM8 exerts its oncogenic effect by regulating the ERK-CREB/c-Fos signaling axis. Hyperactivation of ERK signaling can be reversed by TRPM8 inhibition. Importantly, TRPM8 is overexpressed in AML patients, indicating that it is a new prognostic factor in AML. Collectively, our work demonstrates the anti-AML effects of tegaserod maleate via targeting TRPM8 and indicates that TRPM8 is a regulator of leukemogenesis with therapeutic potential in AML.


Assuntos
Leucemia Mieloide Aguda , Canais de Cátion TRPM , Apoptose , Carcinogênese , Proliferação de Células , Sobrevivência Celular , Humanos , Indóis , Leucemia Mieloide Aguda/metabolismo , Proteínas de Membrana/metabolismo
4.
Asian Pac J Cancer Prev ; 15(11): 4589-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24969890

RESUMO

The mammalian target of rapamycin (mTOR) signaling pathway is upregulated in the pathogenesis of many cancers, including colorectal cancer (CRC). DEPTOR is an mTOR inhibitor whose expression is negatively regulated by mTOR. However, the role of DEPTOR in the development of CRC is not known. The aim of this study was to investigate the expression of DEPTOR and mTORC1 activity (P-S6) in a subset of CRC patients and determine their relation to tumor differentiation, invasion, nodal metastasis and disease-free survival. Here, Immunohistochemical expression of P-S6 (S235/236) and DEPTOR were evaluated in 1.5 mm tumor cores from 90 CRC patients and in 90 samples of adjacent normal mucosa by tissue microarray. The expression of P-S6 (S235/236) was upregulated in CRC, with the positive rate of P-S6 (S235/236) in CRC (63.3%) significantly higher than that in control tissues (36.7%, 30%) (p<0.05). P-S6 (S235/236) also correlated with high tumor histologic grade (p=0.002), and positive nodal metastasis (p=0.002). In contrast, the expression level of DEPTOR was correlated with low tumor histological grade (p=0.006), and negative nodal metastasis (p=0.001). Interestingly, P-S6 (S235/236) expression showed a significant negative association with the expression of DEPTOR in CRC (p=0.011, R= -0.279). However, upregulation of P-S6 (S235/236) (p=0.693) and downregulation of DEPTOR (p=0.331) in CRC were not significantly associated with overall survival. Thus, we conclude that expression of DEPTOR negatively correlates with mTORC1 activity and tumor progression in CRC. DEPTOR is a potential marker for prognostic evaluation and a target for the treatment of CRC.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular/genética , Neoplasias Colorretais/metabolismo , Progressão da Doença , Intervalo Livre de Doença , Regulação para Baixo/genética , Feminino , Humanos , Metástase Linfática/genética , Metástase Linfática/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Prognóstico , Regulação para Cima/genética , Adulto Jovem
5.
Cell Signal ; 25(11): 2239-45, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23872070

RESUMO

mTORC2, the mammalian target of rapamycin complex 2 is activated by upstream growth factors, and performs two major functions, phosphorylation of AKT at the serine of 473 and cell cycle-dependent organization of actin cytoskeleton. However, the mechanisms through which mTORC2 is triggered by these signals remain unclear. We demonstrated, for the first time, that inhibitor of nuclear factor κ-B kinase (IKK) interacted with rictor and regulated mTORC2 activity. Not only endogenously, but ectopically expressed IKK α and IKK ß physically interacted with rictor. An in vitro binding assay revealed that rictor interacted with IKKα and IKKß from amino acids 999 to 1397. Moreover, chemical inhibition of IKK, knockdown of IKK by small interference RNA (siRNA), or ectopic expression of kinase-dead IKK (IKK KD) repressed phosphorylation of AKT (S473) in a variety of cell lines and decreased the kinase activity of mTORC2. In NIH 3T3 cells, inhibition of IKK also reduced phosphorylation of protein kinase α (PKCα) (S657) and resulted in disorganization of actin cytoskeleton. Interestingly, the interaction between IKKα/ß and rictor was increased, while the mTOR-rictor association was attenuated by inhibition of IKK. We identified a novel signaling mechanism for the regulation of mTORC2 by IKK: IKK interacted with rictor and regulated the function of mTORC2 including phosphorylation of AKT (S473) and organization of actin cytoskeleton. Inactivated IKK interacted with rictor and competed against mTOR, which resulted in a reduced mTORC2 level and a decrease in mTORC2 activity.


Assuntos
Citoesqueleto de Actina/genética , Proteínas de Transporte/genética , Quinase I-kappa B/genética , Complexos Multiproteicos/genética , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Proteínas de Transporte/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Células NIH 3T3 , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA